User Tools

Site Tools


Plugin installed incorrectly. Rename plugin directory '_include' to 'include'.
Plugin installed incorrectly. Rename plugin directory '__include' to 'include'.
lecture_3_slides

Warning: Undefined array key "do" in /home/levene/public_html/w/mst10030/lib/plugins/revealjs/action.php on line 14
↓ Slide 1

Another look at the last example

  • $\begin{array}{ccccccrrr} x&+&3y&+&z&=&5&\quad&(1)\\ 2x&+&7y&+&4z&=&17&&(2)\end{array}$
  • Find solutions of this system by applying operations
  • Aim to end up with a very simple sort of system where we can see the solutions easily.
  • $\begin{array}{ccccccrrr} x&+&3y&+&z&=&5&\quad&(1)\\ 2x&+&7y&+&4z&=&17&&(2)\end{array}$
  • Replace equation (2) with $(2)-2\times (1)$:
  • $\begin{array}{ccccccrrr} x&+&3y&+&z&=&5&\quad&(1)\\ &&y&+&2z&=&7&&(2)\end{array}$
  • Now replace equation (1) with $(1)-3\times (2)$
  • $\begin{array}{ccccccrrr} x&&&-&5z&=&-16&\quad&(1)\\ &&y&+&2z&=&7&&(2)\end{array}$
  • $\begin{array}{ccccccrrr} x&&&-&5z&=&-16&\quad&(1)\\ &&y&+&2z&=&7&&(2)\end{array}$
  • can easily rearrange (1) to find $x$ in terms of $z$
  • can easily rearrange (2) to find $y$ in terms of $z$
  • Since $z$ can take any value, write $z=t$ where $t$ is a “free parameter”
  • (which means $t$ can be any real number, or $t\in \mathbb{R}$).
  • Solution: \begin{align*} x&=-16+5t\\ y&=7-2t\\ z&=t,\qquad t\in \mathbb{R}\end{align*}
  • Solution: \begin{align*} x&=-16+5t\\ y&=7-2t\\ z&=t,\qquad t\in \mathbb{R}\end{align*}
  • Can also write this in “vector form”:
  • $\begin{bmatrix} x\\y\\z\end{bmatrix}=\begin{bmatrix} -16\\7\\0\end{bmatrix}+t\begin{bmatrix} 5\\-2\\1\end{bmatrix},\qquad t\in \mathbb{R}.$
  • This is the equation of the line where the two planes described by the original equations intersect.
  • $\begin{bmatrix} x\\y\\z\end{bmatrix}=\begin{bmatrix} -16\\7\\0\end{bmatrix}+t\begin{bmatrix} 5\\-2\\1\end{bmatrix},\qquad t\in \mathbb{R}$
  • For each value of $t$, we get a different solution (a different point on the line of intersection).
  • e.g. take $t=0$ to see that $(-16,7,0)$ is a solution
  • take $t=1.5$ to see that $(-16+1.5\times 5,7+1.5\times (-2),1.5) = (-8.5,4,1.5)$ is another solution
  • etc.
  • This works for any value $t\in\mathbb{R}$, and every solution may be written in this way.
↓ Slide 2

Observations

  1. The operations we applied to the original linear system don't change the set of solutions. This is because each operation is reversible.
  2. Writing out the variables $x,y,z$ each time is unnecessary:
  • erase the variables from the system $$\begin{array}{ccccccrrr} x&+&3y&+&z&=&5&\quad&(1)\\ 2x&+&7y&+&4z&=&17&&(2)\end{array}$$
  • write all the numbers in a grid, or a matrix
  • we get $\begin{bmatrix} 1&3&1&5\\2&7&4&17\end{bmatrix}$
  • System of linear equations: $\begin{array}{ccccccrrr} x&+&3y&+&z&=&5&\quad&(1)\\ 2x&+&7y&+&4z&=&17&&(2)\end{array}$
  • $\begin{bmatrix} 1&3&1&5\\2&7&4&17\end{bmatrix}$ is called the augmented matrix of this linear system
  • Each row corresponds to one equation.
  • Each column corresponds to one variable
    • (except the last column, which has the right-hand-sides of the equations)
  • Instead of performing operations on equations, we can perform operations on the rows of this matrix.

\begin{align*} \begin{bmatrix} 1&3&1&5\\2&7&4&17\end{bmatrix} &\xrightarrow{R2\to R2-2\times R1} \begin{bmatrix} 1&3&1&5\\0&1&2&7\end{bmatrix} \\[6pt]&\xrightarrow{R1\to R1-3\times R1} \begin{bmatrix} 1&0&-5&-16\\0&1&2&7\end{bmatrix} \end{align*}

  • Translate back into equations and solve:
  • $\begin{array}{ccccccrrr} x&&&-&5z&=&-16&\quad&(1)\\ &&y&+&2z&=&7&&(2)\end{array}$
  • $\begin{bmatrix} x\\y\\z\end{bmatrix}=\begin{bmatrix} -16\\7\\0\end{bmatrix}+t\begin{bmatrix} 5\\-2\\1\end{bmatrix},\qquad t\in \mathbb{R}.$

This method always works:

  • take any system of linear equations
  • write down a corresponding matrix (the augmented matrix)
  • perform reversible operations on the rows of this matrix to get a “nicer” matrix
  • write down a new system of linear equations with the same solutions as the original system.
  • Hopefully the new system will be easy to solve…
  • and the solutions haven't changed, so we'll have solved the original system!
→ Slide 3

The augmented matrix and elementary operations

↓ Slide 4

Definition

Given a system of linear equations: \begin{align*} a_{11}x_1+a_{12}x_2+\dots+a_{1m}x_m&=b_1\\ a_{21}x_1+a_{22}x_2+\dots+a_{2m}x_m&=b_2\\ \hphantom{a_{11}}\vdots \hphantom{x_1+a_{22}}\vdots\hphantom{x_2+\dots+{}a_{nn}} \vdots\ & \hphantom{{}={}\!} \vdots\\ a_{n1}x_1+a_{n2}x_2+\dots+a_{nm}x_m&=b_n \end{align*} its augmented matrix is \[ \begin{bmatrix} a_{11}&a_{12}&\dots &a_{1m}&b_1\\ a_{21}&a_{22}&\dots &a_{2m}&b_2\\ \vdots&\vdots& &\vdots&\vdots\\ a_{n1}&a_{n2}&\dots &a_{nm}&b_n \end{bmatrix}.\]

The numbers in this matrix are called its entries.

↓ Slide 5

Example

  • Find the augmented matrix of the linear system\begin{align*}3x+4y+7z&=2\\x+3z&=0\\y-2z&=5\end{align*}
  • We can rewrite it as \begin{align*}3x+4y+7z&=2\\{\color{red}1}x+{\color{red}0y}+3z&=0\\{\color{red}0x}+{\color{red}1}y-2z&=5\end{align*}
  • So the augmented matrix is\[ \begin{bmatrix} 3&4&7&2\\1&0&3&0\\0&1&-2&5\end{bmatrix}.\]
↓ Slide 6

Elementary operations on a system of linear equations

If we perform one of the following operations on a system of linear equations:

  1. list the equations in a different order; or
  2. multiply one of the equations by a non-zero real number; or
  3. replace equation $j$ by “equation $j$ ${}+{}$ $c\times {}$ (equation $i$)”, where $c$ is a non-zero real number and $i\ne j$,

then the new system will have exactly the same solutions as the original system. These are called elementary operations on the linear system.

↓ Slide 7

Why do elementary operations leave the solutions of systems unchanged?

  • We do the same thing to the left hand side and the right hand side of each equation…
    • so any solution to the original system will also be a solution to the new system.
  • These operations are all reversible (using operations of the same type)…
    • so any solution to the new system will also be a solution to the original system.
↓ Slide 8

Elementary row operations on a matrix

Translate elementary operations on the linear system into operations on the rows of the augmented matrix:

  1. change the order of the rows of the matrix;
  2. multiply one of the rows of the matrix by a non-zero real number;
  3. replace row $j$ by “row $j$ ${}+{}$ $c\times {}$ (row $i$)”, where $c$ is a non-zero real number and $i\ne j$.
  • These operations are called elementary row operations or EROs on the matrix.
  • The systems of linear equations corresponding to these matrices have exactly the same solutions.
↓ Slide 9

Example

Use EROs to find the intersection of the planes \begin{align*} 3x+4y+7z&=2\\x+3z&=0\\y-2z&=5\end{align*}

↓ Slide 10

Solution 1

\begin{align*} \def\go#1#2#3{\left[\begin{smallmatrix}#1\\#2\\#3\end{smallmatrix}\right]} \def\ar#1{\\\xrightarrow{#1}&} &\go{3&4&7&2}{1&0&3&0}{0&1&-2&5} \ar{\text{reorder rows}}\go{1&0&3&0}{0&1&-2&5}{3&4&7&2} \ar{R3\to R3-3R1}\go{1&0&3&0}{0&1&-2&5}{0&4&-2&2} \ar{R3\to R3-4R2}\go{1&0&3&0}{0&1&-2&5}{0&0&6&-18} \ar{R3\to \tfrac16 R3}\go{1&0&3&0}{0&1&-2&5}{0&0&1&-3} \end{align*}

$\go{1&0&3&0}{0&1&-2&5}{0&0&1&-3}$

  • from the last row, we get $z=-3$
  • from the second row, we get $y-2z=5$
    • so $y-2(-3)=5$
    • so $y=-1$
  • from the first row, we get $x+3z=0$
    • so $x+3(-3)=0$
    • so $x=9$
  • Conclusion: $\begin{bmatrix}x\\y\\z\end{bmatrix}=\begin{bmatrix}9\\-1\\-3\end{bmatrix}$ is the only solution.
↓ Slide 11

Solution 2

We start in the same way, but by performing more EROs we make the algebra at the end simpler.

\begin{align*} \def\go#1#2#3{\left[\begin{smallmatrix}#1\\#2\\#3\end{smallmatrix}\right]} \def\ar#1{\\\xrightarrow{#1}&} &\go{3&4&7&2}{1&0&3&0}{0&1&-2&5} \ar{\ldots \text{same EROs as above}\ldots}\go{1&0&3&0}{0&1&-2&5}{0&0&1&-3} \ar{R2\to R2+2R3}\go{1&0&3&0}{0&1&0&-1}{0&0&1&-3} \ar{R1\to R1-3R3}\go{1&0&0&9}{0&1&0&-1}{0&0&1&-3} \end{align*}

\[ \go{1&0&0&9}{0&1&0&-1}{0&0&1&-3}\]

  • from the last row, we get $z=-3$
  • from the second row, we get $y=-1$
  • from the first row, we get $x=9$
  • So $\begin{bmatrix}x\\y\\z\end{bmatrix}=\begin{bmatrix}9\\-1\\-3\end{bmatrix}$ is the only solution.
↓ Slide 12

Discussion

Both solutions use EROs to transform the augmented matrix.

  • Solution 1: $\left[\begin{smallmatrix}1&0&3&0\\0&1&-2&5\\0&0&1&-3\end{smallmatrix}\right]$.
    • “Staircase pattern”: 1s on “steps”, zeros below steps
    • Called row echelon form
    • Needed algebra to finish solution.
  • Solution 2: $\left[\begin{smallmatrix}1&0&0&9\\0&1&0&-1\\0&0&1&-3\end{smallmatrix}\right]$
    • Staircase with zeros above 1s on steps (and below).
    • Called reduced row echelon form
    • No extra algebra needed to finish solution.
lecture_3_slides.txt · Last modified: by rupert

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki