User Tools

Site Tools


Plugin installed incorrectly. Rename plugin directory '_include' to 'include'.
Plugin installed incorrectly. Rename plugin directory '__include' to 'include'.
lecture_11_slides

Warning: Undefined array key "do" in /home/levene/public_html/w/mst10030/lib/plugins/revealjs/action.php on line 14
↓ Slide 1

Last time

  • An $n\times n $ matrix $A$ is invertible if there is a matrix $C$ solving the matrix equations $AC=I_n$ and $CA=I_n$. We then say $C$ is an inverse of $A$.
  • e.g. $\def\mat#1{\left[\begin{smallmatrix}#1\end{smallmatrix}\right]}\mat{2&4\\0&1}$ is invertible, with inverse $C=\mat{0.5&-2\\0&1}$
  • if $[a]$ is $1\times 1$ and $a\ne 0$, then $C=[\tfrac 1a]$ is an inverse
  • $I_n$ is its own inverse for any $n$
  • $0_{n\times n}$, $\mat{1&0\\0&0}$ and $\mat{1&2\\-3&-6}$ aren't invertible
↓ Slide 2

Proposition: uniqueness of the inverse

If $A$ is an invertible $n\times n$ matrix, then $A$ has a unique inverse.

Proof

  • $A$ invertible, so $A$ has at least one inverse.
  • Suppose it has two inverses, say $C$ and $D$.
  • Then $AC=I_n=CA$ and $AD=I_n=DA$.
  • So $C=CI_n=C(AD)=(CA)D=I_nD=D$
  • So $C=D$.
  • So any two inverses of $A$ are equal.
  • So $A$ has a unique inverse.■
↓ Slide 3

Definition/notation: $A^{-1}$

If $A$ is an invertible $n\times n$ matrix, then the unique $n\times n$ matrix $C$ with $AC=I_n=CA$ is called the inverse of $A$. If $A$ is invertible, then we write $A^{-1}$ to mean the (unique) inverse of $A$.

↓ Slide 4

Examples again

  • $A=\mat{2&4\\0&1}$ is invertible, and $A^{-1}=\mat{\tfrac12&-2\\0&1}$.
    • i.e. $\mat{2&4\\0&1}^{-1}=\mat{\tfrac12&-2\\0&1}$
  • if $a$ is a non-zero scalar, then $[a]^{-1}=[\tfrac 1a]$
  • $I_n^{-1}=I_n$ for any $n$
  • $0_{n\times n}^{-1}$, $\mat{1&0\\0&0}^{-1}$ and $\mat{1&2\\-3&-6}^{-1}$ do not exist
    • because these matrices aren't invertible
↓ Slide 5

Warning

If $A$, $B$ are matrices, never write down $\frac AB$. It doesn't make (unambiguous) sense!

  • $\frac AB$ is ambiguous, or not well defined:
    • it could mean $B^{-1}A$
    • or equally well it could mean $AB^{-1}$
    • and these are usually different because matrix multiplication isn't commutative!
  • In particular, $A^{-1}$ definitely doesn't mean $\frac 1A$. Never write this either!
↓ Slide 6

Proposition: solving $AX=B$ when $A$ is invertible

If $A$ is an invertible $n\times n$ matrix and $B$ is an $n\times k$ matrix, then $ AX=B$ has a unique solution: $X=A^{-1}B$.

Proof

  • First check that $X=A^{-1}B$ really is a solution:
    • $AX=A(A^{-1}B)=(AA^{-1})B=I_nB=B$ :-)
  • Uniqueness: suppose $X$ and $Y$ are both solutions
  • Then $AX=B$ and $AY=B$, so $AX=AY$.
  • Multiply both sides on the left by $A^{-1}$:
    • $A^{-1}AX=A^{-1}AY$, or $I_nX=I_n Y$, or $X=Y$.
  • So any two solutions are equal.■
  • Easy to remember how to solve $AX=B$
  • Multiply both sides (on the left) by $A^{-1}$
    • reason: want to “cancel $A$” on the left hand side
    • so we just end up with $X=\ldots$
  • Example: Solve $\mat{2&4\\0&1}X=\mat{1\\3}$
  • Know $\mat{2&4\\0&1}^{-1}=\mat{0.5&-2\\0&1}$
  • Solution: $X=\mat{2&4\\0&1}^{-1}\mat{1\\3}=\mat{0.5&-2\\0&1}\mat{1\\3}=\mat{-5.5\\3}$
  • Check: $\mat{2&4\\0&1}X = \mat{2&4\\0&1}\mat{-5.5\\3}=\mat{1\\3}$ :-)
↓ Slide 7

Corollary

If $A$ is an $n\times n$ matrix and there is a non-zero $n\times m$ matrix $K$ so that $AK=0_{n\times m}$, then $A$ is not invertible.

Proof

  • $AX=0_{n\times m}$ has (at least) two solutions:
    • $X=K$,
    • and $X=0_{n\times m}$
  • So there is not a unique solution to $AX=B$, for $B$ the zero matrix
  • If $A$ was invertible, this would contradict the uniqueness statement of the last Proposition.
  • So $A$ cannot be invertible. ■
↓ Slide 8

Example

  • Let $A=\mat{1&2\\-3&-6}$. $A$ isn't invertible… why?
  • One column of $A$ is $2$ times the other… exploit this.
  • Let $K=\mat{-2\\1}$
  • $K$ is non-zero but $AK=\mat{1&2\\-3&-6}\mat{-2\\1}=\mat{0\\0}=0_{2\times 1}$
  • So $A$ is not invertible, by the Corollary.
↓ Slide 9

Example

  • $A=\mat{1&4&5\\2&5&7\\3&6&9}$ is not invertible
    • $X=\mat{1\\1\\-1}$ is non-zero
    • and $AX=0_{3\times 1}$.
→ Slide 10

$2\times 2$ matrices: determinants and invertibility

↓ Slide 11

Question

Which $2\times 2$ matrices are invertible? For the invertible matrices, can we find their inverse?

↓ Slide 12

Lemma

If $A=\mat{a&b\\c&d}$ and $J=\mat{d&-b\\-c&a}$, then we have \[ AJ=(ad-bc) I_2=JA.\]

  • Proof is an easy calculation!
  • Note that $(ad-bc) I_2=(ad-bc)\mat{1&0\\0&1}=\mat{ad-bc&0\\0&ad-bc}$
  • Now just show that $AJ$ and $JA$ both give the same matrix (exercise).
↓ Slide 13

Definition: the determinant of a $2\times 2$ matrix

The number $ad-bc$ is called the determinant of the $2\times 2$ matrix $A=\mat{a&b\\c&d}$. We write $\det(A)=ad-bc$ for this number.

↓ Slide 14

Theorem: the determinant determines the invertibility (and inverse) of a $2\times 2$ matrix

Let $A=\mat{a&b\\c&d}$ be a $2\times 2$ matrix.

  1. $A$ is invertible if and only if $\det(A)\ne0$.
  2. If $A$ is invertible, then $A^{-1}=\frac{1}{\det(A)}\mat{d&-b\\-c&a}$.
↓ Slide 15

Proof

  • Let $J=\mat{d&-b\\-c&a}$, so $AJ=\det(A) I_2=JA$ (Lemma).

If $\det(A)\ne 0$:

  • Multiply by $\frac1{\det(A)}$: $\quad A(\tfrac1{\det(A)}J)=I_2=(\tfrac1{\det(A)}J) A$
  • So $A$ invertible with $A^{-1}=\frac1{\det(A)}J=\frac1{\det(A)}\mat{d&-b\\-c&a}$.

If $\det(A)=0$:

  • $AJ=0_{2\times 2}$
  • If $J\ne 0_{2\times 2}$ then (by corollary) $A$ isn't invertible.
  • If $J=0_{2\times 2}$ then $A=0_{2\times 2}$, which isn't invertible.■
↓ Slide 16

Using the inverse to solve a matrix equation

  • Solve $\mat{1&5\\3&-2}X=\mat{4&1&0\\0&2&1}$ for $X$
  • Write $A=\mat{1&5\\3&-2}$
  • $\det(A)=1(-2)-5(3)=-2-15=-17$
  • So $A$ is invertible, and $A^{-1}=-\frac1{17}\mat{-2&-5\\-3&1}$
  • Solution is $X=A^{-1}\mat{4&1&0\\0&2&1}=-\frac1{17}\mat{-2&-5\\-3&1}\mat{4&1&0\\0&2&1}=\frac1{17}\mat{8&12&5\\12&1&-1}$
lecture_11_slides.txt · Last modified: by rupert

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki