User Tools

Site Tools


Plugin installed incorrectly. Rename plugin directory '_include' to 'include'.
Plugin installed incorrectly. Rename plugin directory '__include' to 'include'.
lecture_10_slides

Warning: Undefined array key "do" in /home/levene/public_html/w/mst10030/lib/plugins/revealjs/action.php on line 14
→ Slide 1

Matrix equations

  • A linear equation can be written using row-column multiplication.
  • e.g. $ \newcommand{\m}[1]{\left[\begin{smallmatrix}#1\end{smallmatrix}\right]} 2x-3y+z=8$ is same as $ \m{2&-3&1}\m{x\\y\\z}=8$
  • or $ a\vec x=8$ where $a=\m{2&-3&1}$ and $\vec x=\m{x\\y\\z}$.
  • is same as $\m{2&-3&1\\0&1&-1\\1&1&1}\m{x\\y\\z}=\m{8\\4\\0}$
  • or $ A\vec x=\vec b$ where $A=\m{2&-3&1\\0&1&-1\\1&1&1}$, $\vec x=\m{x\\y\\z}$ and $\vec b=\m{8\\4\\0}$.

In a similar way, any linear system \begin{align*} a_{11}x_1+a_{12}x_2+\dots+a_{1m}x_m&=b_1\\ a_{21}x_1+a_{22}x_2+\dots+a_{2m}x_m&=b_2\\ \hphantom{a_{11}}\vdots \hphantom{x_1+a_{22}}\vdots\hphantom{x_2+\dots+{}a_{nn}} \vdots\ & \hphantom{{}={}\!} \vdots\\ a_{n1}x_1+a_{n2}x_2+\dots+a_{nm}x_m&=b_n \end{align*} can be written in the form \[ A\vec x=\vec b\] where $A$ is the $n\times m $ matrix, called the coefficient matrix of the linear system, whose $(i,j)$ entry is $a_{ij}$ (the number in front of $x_j$ in the $i$th equation of the system).

↓ Slide 2

Solutions of matrix equations

  • More generally, might want to solve a matrix equation like \[AX=B\] where $A$, $X$ and $B$ are matrices of any size, with $A$ and $B$ fixed matrices and $X$ a matrix of unknown variables.
  • If $A$ is $n\times m$, we need $B$ to be $n\times k$ for some $k$, and then $X$ must be $m\times k$
    • so we know the size of any solution $X$.
  • But which $m\times k$ matrices $X$ are solutions?
↓ Slide 3

Example

If $A=\m{1&0\\0&0}$ and $B=0_{2\times 3}$, then any solution $X$ to $AX=B$ must be $2\times 3$.

  • One solution is $X=0_{2\times 3}$
    • because then we have $AX=A0_{2\times 3}=0_{2\times 3}$.
  • This is not the only solution!
  • For example, $X=\m{0&0&0\\1&2&3}$ is another solution
    • because then we have $AX=\m{1&0\\0&0}\m{0&0&0\\1&2&3}=\m{0&0&0\\0&0&0}=0_{2\times 3}.$
  • So a matrix equation can have more than one solution.
↓ Slide 4

Example

  • Let $A=\m{2&4\\0&1}$
  • and $B=\m{3&4\\5&6}$
  • Solve $AX=B$ for $X$
  • $X$ must be $2\times 2$
  • $X=\m{x_{11}&x_{12}\\x_{21}&x_{22}}$
  • Do some algebra to solve for $X$
  • Is there a quicker way?
↓ Slide 5

Example

  • Consider $AX=B$, where
    • $A=\def\m#1{\left[\begin{smallmatrix}#1\end{smallmatrix}\right]}\m{1&0\\0&0}$
    • $B=0_{2\times 3}$,
  • i.e. $\m{1&0\\0&0}X=\m{0&0&0\\0&0&0}$
  • then any solution $X$ to $AX=B$ must be $2\times 3$.
  • One solution is $X=0_{2\times 3}$
  • Are there any more?
  • Yes! e.g. $X=\m{0&0&0\\1&2&3}$
  • So a matrix equation can have more than one solution.
→ Slide 6

Invertibility

↓ Slide 7

Example

  • Take $A=\def\mat#1{\m{#1}}\mat{2&4\\0&1}$ and $B=\mat{3&4\\5&6}$, consider $AX=B$
  • $\mat{2&4\\0&1}X=\mat{3&4\\5&6}$
  • $X$ must be $2\times 2$ matrix
  • One way to solve: write $X=\mat{x_{11}&x_{12}\\x_{21}&x_{22}}$
  • Plug in and do matrix multiplication: $\mat{2x_{11}+4x_{21}&2 x_{12}+4x_{22}\\x_{21}&x_{22}}=\mat{3&4\\5&6}$
  • Get four linear equations: $\begin{align*}2x_{11}+4x_{21}&=3\\2 x_{12}+4x_{22}&=4\\x_{21}&=5\\x_{22}&=6\end{align*}$
  • Can solve in the usual way….
  • Tedious! Can we do better?
↓ Slide 8

Simpler: $1\times 1$ matrix equations

  • Let $a,b$ be ordinary numbers ($1\times 1$ matrices) with $a\ne0$. How do we solve $ax=b$?
  • Answer: multiply both sides by $a^{-1}$
    • (for numbers, $a^{-1}$ is same as $\tfrac1a$)
  • Solution: $x=a^{-1}b$.
  • Why does this work?
  • If $x=\tfrac1a\cdot b$, then $ax=a(\tfrac1a\cdot b)=(a\cdot \tfrac1a)b=1b=b$
  • so $ax$ really is equal to $b$
  • We do have a solution to $ax=b$.
↓ Slide 9

Thinking about $a^{-1}$ for $a$ a number

  • What is special about $a^{-1}$ which made this all work?
  • Write $c=a^{-1}$
  • $1b=b$, and $a c = 1$
  • so $ x=cb$ has $ax=acb=1b=b$ :-)
↓ Slide 10

What about matrices?

  • Can we do something similar for an $n\times n$ matrix $A$?
  • i.e. find a matrix $C$ with similar properties?
    • Replace $1$ with $I_n$
    • Then $I_nB=B$
    • So if we had a matrix $C$ with $CA=I_n$…
    • Then $X=CB$ would have $AX=ACB=I_nB=B$ :-)
  • The key property of $C$ is that $AC=I_n$.
  • Turns out we also want $CA=I_n$
↓ Slide 11

Example revisited

  • Let $A=\mat{2&4\\0&1}$
  • The matrix $C=\mat{\tfrac12&-2\\0&1}$ does have the property\[ C A =I_2= AC.\]
  • Check this!
  • Multiply both sides of $AX=B$ on the left by $C$ and use $CA=I_2$:
  • Get $X=CB=\mat{\tfrac12&-2\\0&1}\mat{3&4\\5&6} = \mat{-8.5&-10\\5&6}$.
  • This is quicker than solving lots of equations
    • although we don't yet know how to find $C$ from $A$
  • Also, if we change $B$ we can easily find solutions to the new equation
↓ Slide 12

Definition: invertible

An $n\times n$ matrix $A$ is invertible if there exists an $n\times n$ matrix $C$ so that \[ AC=I_n=C A.\] The matrix $C$ is called an inverse of $A$.

↓ Slide 13

Examples

  • $A=\mat{2&4\\0&1}$ is invertible, and $C=\mat{\tfrac12&-2\\0&1}$ is an inverse
  • a $1\times 1$ matrix $A=[a]$ is invertible if and only if $a\ne0$, and if $a\ne0$ then an inverse of $A=[a]$ is $C=[\tfrac1a]$.
  • $I_n$ is invertible for any $n$, with inverse $I_n$
  • $0_{n\times n}$ is not invertible for any $n$… why?
  • $A=\mat{1&0\\0&0}$ is not invertible… why?
  • $A=\mat{1&2\\-3&-6}$ is not invertible. We'll see why later!
↓ Slide 14

Proposition: uniqueness of the inverse

If $A$ is an invertible $n\times n$ matrix, then $A$ has a unique inverse.

Proof

  • $A$ invertible, so $A$ has at least one inverse.
  • Suppose it has two inverses, say $C$ and $D$.
  • Then $AC=I_n=CA$ and $AD=I_n=DA$.
  • So $C=CI_n=C(AD)=(CA)D=I_nD=D$
  • So $C=D$.
  • So any two inverses of $A$ are equal.
  • So $A$ has a unique inverse.■
↓ Slide 15

Definition/notation: $A^{-1}$

If $A$ is an invertible $n\times n$ matrix, then the unique $n\times n$ matrix $C$ with $AC=I_n=CA$ is called the inverse of $A$. If $A$ is invertible, then we write $A^{-1}$ to mean the (unique) inverse of $A$.

↓ Slide 16

Examples again

  • $A=\mat{2&4\\0&1}$ is invertible, and $A^{-1}=\mat{\tfrac12&-2\\0&1}$.
    • i.e. $\mat{2&4\\0&1}^{-1}=\mat{\tfrac12&-2\\0&1}$
  • if $a$ is a non-zero scalar, then $[a]^{-1}=[\tfrac 1a]$
  • $I_n^{-1}=I_n$ for any $n$
  • $0_{n\times n}^{-1}$, $\mat{1&0\\0&0}^{-1}$ and $\mat{1&2\\-3&-6}^{-1}$ do not exist
    • because these matrices aren't invertible
↓ Slide 17

Warning

If $A$, $B$ are matrices, then $\frac AB$ doesn't make sense!

  • Never write this down as it will almost always lead to mistakes.
  • In particular, $A^{-1}$ definitely doesn't mean $\frac 1A$. Never write this either!
↓ Slide 18

Proposition: solving $AX=B$ when $A$ is invertible

If $A$ is an invertible $n\times n$ matrix and $B$ is an $n\times k$ matrix, then $ AX=B$ has a unique solution: $X=A^{-1}B$.

Proof

  • First check that $X=A^{-1}B$ really is a solution:
    • $AX=A(A^{-1}B)=(AA^{-1})B=I_nB=B$ :-)
  • Uniqueness: suppose $X$ and $Y$ are both solutions
  • Then $AX=B$ and $AY=B$, so $AX=AY$.
  • Multiply both sides on the left by $A^{-1}$:
    • $A^{-1}AX=A^{-1}AY$, or $I_nX=I_n Y$, or $X=Y$.
  • So any two solutions are equal.
  • So $AX=B$ has a unique solution.■
↓ Slide 19

Corollary

If $A$ is an $n\times n$ matrix and there is a non-zero $n\times m$ matrix $K$ so that $AK=0_{n\times m}$, then $A$ is not invertible.

Proof

  • $AX=0_{n\times m}$ has (at least) two solutions:
    • $X=K$,
    • and $X=0_{n\times m}$
  • If $A$ was invertible, this would contradict the Proposition.
  • So $A$ cannot be invertible. ■
↓ Slide 20

Example

  • Let $A=\mat{1&2\\-3&-6}$. $A$ isn't invertible… why?
  • One column of $A$ is $2$ times the other… exploit this.
  • Let $K=\mat{-2\\1}$
  • $K$ is non-zero but $AK=\mat{1&2\\-3&-6}\mat{-2\\1}=\mat{0\\0}=0_{2\times 1}$
  • So $A$ is not invertible, by the Corollary.
  • Next time: a more systematic way to determine when a matrix is invertible: determinants
lecture_10_slides.txt · Last modified: by rupert

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki