Submitted papers
- C. Lu, D. Durante, N. Friel. Zero-inflated stochastic block modeling of efficiency-security tradeoffs in weighted criminal networks.
arXiv
- C. Lu, N. Friel. Bayesian Strategies for Repulsive Spatial Point Processes.
arXiv
Publications
- L. Piancastelli, N. Friel. The clustered Mallow model. Statistics and Computing (to appear). arXiv
- L. Piancastelli, N. Friel, J. Vercelloni, K. Mengersen and A. Mira. (2024) A Bayesian latent allocation model for clustering compositional data with application to the Great Barrier Reef. Scientific Reports 14, 22123. DOI
arXiv
- R. Rastelli, F. Maire and N. Friel. (2024) Computationally efficient inference for latent position network models. Electronic Journal of Statistics. Vol. 18, No. 1, 2531-2570.
arXiv DOI
- J. Mulder, N. Friel and P. Leifeld. (2024) Bayesian Testing of Scientific Expectations Under Exponential Random Graph Models. Social Networks. Vol 78, 40-53.
arXiv DOI
- H. Kaur, R. Rastelli, N. Friel, A.E. Raftery. (2023) Latent position network models. Chapter 36 in Sage Handbook of Social Network Analysis (2nd Edition), edited by J. McLevey, P. Carrington and J. Scott, Sage Publications.
arXiv
- F. Basini, V. Tsouli, I. Ntzoufras and N. Friel. (2023).
Assessing competitive balance in the English Premier League for over
forty seasons using a stochastic block model.
Journal of the Royal Statistical Society, Series A. Vol. 186. 530-556.
arXiv
DOI
- L.S.C. Piancastelli, N. Friel, W. Barreto-Souza and H. Ombao. (2023)
Multivariate Conway-Maxwell-Poisson Distribution: Sarmanov Method and Doubly-Intractable Bayesian
Inference. Journal of Computational and Graphical Statistics. Vol. 32. 483-500.
arXiv
DOI
- J. Meagher and N. Friel. (2022) Assessing epidemic curves for evidence of superspreading.
Journal of the Royal Statistical Society, Series A. Vol. 185. 2179-2202.
DOI
arXiv
- A. Caimo, L. Bouranis, R. Krause, and N. Friel. Statistical Network Analysis with Bergm. Journal of Statistical Software
(to appear).
arXiv
- J.P. Gleeson, T.B. Murphy, J.D. O'Brien, N. Friel, N. Bargary, D.J.P. O'Sullivan. (2022) Calibrating COVID-19 SEIR models with time-varying effective contact rates.
Philosophical Transactions of the Royal Society A. Vol. 380 (2214), 20210120.
DOI
arXiv
- A. Benson and N. Friel. (2021) Bayesian inference, model selection and likelihood estimation using fast rejection sampling: the Conway-Maxwell-Poisson distribution. Bayesian Analysis. Vol 16, pages 905–931.
DOI
arXiv
- L. Tan and N. Friel. (2020) Bayesian variational inference for exponential random graph models. Journal of Computational and Graphical Statistics. Vol 29, pages 910-928.
DOI
arXiv
- F. Maire, N. Friel, A. Mira and A.E. Raftery. (2019). Adaptive Incremental Mixture Markov chain Monte Carlo.
Journal of Computational and Graphical Statistics. Vol 28, pages 790-805.
DOI
arXiv
- F. Maire, N. Friel and P. Alquier. (2019). Informed sub-sampling MCMC: Approximate Bayesian Inference for Large Datasets.
Statistics and Computing. Vol. 29, Pages 449-482.
DOI
arXiv
- J. Stoehr, A. Benson and N. Friel. (2019). Noisy Hamiltonian Monte Carlo for doubly-intractable distributions. Journal of Computational and Graphical Statistics. Vol. 28, Pages 220-232.
DOI
arXiv
- A. Boland, N. Friel and F. Maire. (2018) Efficient MCMC for Gibbs Random Fields using pre-computation.
Electronic Journal of Statistics. Volume 12, Number 2, 4138-4179.
arXiv
DOI
- L. Bouranis, N. Friel and F. Maire. (2018) Model comparison for Gibbs random fields using noisy reversible jump Markov chain Monte Carlo.
Computational Statistics and Data Analysis. Volume 128, Pages 221-241.
arXiv
DOI
- R. Rastelli, P. Latouche, and N. Friel. (2018). Choosing the number of groups in a latent stochastic block model for dynamic networks.
Network Science. Vol. 6, Pages 469-493. arXiv
DOI
- A. Benson and N. Friel. (2018) An adaptive MCMC method for multiple changepoint analysis with applications to large datasets.
Electronic Journal of Statistics. Volume 12, 3365-3396.arXiv
DOI
- L. Bouranis, N. Friel and F. Maire. (2018). Bayesian model selection for exponential random graph models via adjusted pseudolikelihoods.
Journal of Computational and Graphical Statistics. Vol. 27, Pages 516-528.
DOI
arXiv
- R. Rastelli and N. Friel. (2018) Optimal Bayesian estimators for latent variable cluster models. Statistics and Computing. Volume 28, Issue 6, pp 1169–1186.
arXiv DOI
R code
- L. Spezia, N.Friel and A. Gimona. (2018). Spatial hidden Markov models and species distributions. Journal of Applied Statistics. Vol. 45, Pages 1595-1615.
DOI
- L. Bouranis, N. Friel and F. Maire. (2017) Bayesian inference for misspecified exponential random graph models. Social Networks, vol. 50, 98–108.
arXiv DOI
- T. Ryan, J. Wyse and N. Friel. (2017) Bayesian model selection for the latent position cluster model
for Social Networks. Network Science, vol. 5, 70-91. arXiv DOI
- N. Friel, J.P. McKeone, C.J. Oates and A.N. Pettitt. Discussion of "A Bayesian information criterion for singular models" arXiv
- N. Friel, J.P. McKeone, C.J. Oates and A.N. Pettitt. (2017) Investigation of the widely applicable Bayesian information criterion.
Statistics and Computing, vol. 27, 833-844. arXiv DOI
- J. Wyse, N.Friel and P. Latouche. (2017) Inferring structure in bipartite networks using the latent block
model and exact ICL . Network Science, vol. 5, 45-69. arXiv DOI
- R. Rastelli, N. Friel and A.E. Raftery. (2016) Properties of Latent Variable Network Models. Network Science, vol 4, 407-432.
arXiv DOI
- N. Friel, R. Rastelli, J. Wyse and A.E. Raftery. (2016) Interlocking directorates in Irish companies using a latent space model for bipartite networks.
Proceedings of the National Academy of Sciences. vol. 113, no. 24, 6629-6634. DOI
- S. Thiemichen, N. Friel, A. Caimo and G. Kauermann. (2016) Bayesian Exponential Random Graph Models with Nodal Random Effects.
Social Networks, vol. 46, 11 - 28. arXiv
DOI
- N. Friel, A. Mira and C.J. Oates. (2016) Exploiting Multi-Core Architectures for Reduced-Variance Estimation with Intractable Likelihoods.
Bayesian Analysis vol. 11, 215 - 245. arXiv
DOI
- P. Alquier, N.Friel, R. Everitt and A. Boland. (2016) Noisy Monte Carlo: Convergence of Markov chains with
approximate transition kernels. Statistics and Computing, vol. 26, 29 - 47. arXiv,
DOI.
(See a related blog post by
Richard Everitt)
- M. Bertoletti, N. Friel and R. Rastelli. (2015) Choosing the number of components in a finite mixture model using an exact Integrated
Completed Likelihood criteria. Metron, vol. 73, 177 - 199. (Special issue on "Latent Variable Models for the Analysis of Socio-Economic Data")
arXiv
- J. Stoehr and N.Friel. (2015) Calibration of conditional composite likelihood for Bayesian inference on Gibbs random fields. AISTATS, Journal of Machine
Learning Research: W&CP, pp. 921-929. pdf
- J.W. Yoon and N.Friel. (2015) Efficient estimation of the number of neighbours in
probabilistic nearest neighbour classification. Neurocomputing. vol. 149, 1098-1108. arXiv
DOI
- A. Caimo and N.Friel. (2014) Bergm: Bayesian inference for exponential random graphs using R.
Journal of Statistical Software. vol. 61, issue 2.
pdf arXiv 23pp.
- A. Caimo and N.Friel. (2014) Actor-based models for longitudinal networks. Encyclopedia of Social Network
Analysis and Mining, Springer. pp 9-18. DOI
- S. Pandolfi, F. Bartolucci and N.Friel. (2014) A generalized multiple-try version of the reversible jump
algorithm. Computational Statistics and Data Analysis. vol. 72, 298 - 314. arXiv
DOI link.
- N.Friel, M.A. Hurn and J. Wyse. (2014) Improving power posterior estimation of statistical evidence.
Statistics and Computing. vol. 24, 709–723. arXiv
DOI link.
- N.Friel. (2013) Estimating the evidence for Gibbs random fields. Journal of Computational and Graphical
Statistics. Vol. 22 pp. 518-532. arXiv
DOI link.
- A. Caimo and N.Friel. (2013) Bayesian model selection for exponential random graph models.
Social Networks. vol 35, pp. 11 - 24.
arXiv pdf
- A. McDaid, B. Murphy, N.Friel and N. Hurley. (2013) Improved Bayesian inference for the stochastic block
model with application to large networks.
Computational Statistics and Data Analysis. vol 60, pp. 12 - 31.
arXiv
- N.Friel. (2012) Bayesian inference for Gibbs random fields using composite likelihoods.
Proceedings of the Winter Simulation Conference 2012
pdf.
- N. Friel and J. Wyse. (2012) Estimating the statistical evidence -- a review. Statistica Neerlandica,
vol 66, 288-308. arXiv.
- A. McDaid, T.B. Murphy, N. Friel and N. Hurley. (2012) Model-based clustering in networks with Stochastic
Community Finding.
Proceedings of COMPSTAT 2012. Pages 549-560.
- J. Wyse and N. Friel. (2012) Block clustering with collapsed latent block models. Statistics and Computing,
vol 22, 415-428. arXiv.
- G. Behrens, N. Friel and M. Hurn. (2012) Tuning tempered transitions. Statistics and Computing,
vol 22, 65-78. arXiv.
- J. Wyse, N. Friel and H. Rue. (2011) Approximate simulation free multiple changepoint analysis with
Gaussian Markov random field segment models. (with discussion) Bayesian Analysis, vol 6, 501-528.
arXiv.
- N. Friel. and J. Wyse. (2011) Discussion of Riemann Manifold Langevin and Hamiltonian Monte Carlo Methods
by M. Girolami and B. Calderhead, JRSSB.
- M. Hall and N. Friel. (2011) Mortality projections using generalised additive models with
applications to annuity values for the Irish population. Annals of Actuarial Science.
vol 5, 19-32.
- H. Wang, N. Friel, F. Gosselin and P. Schyns. (2011) Efficient bubbles for visual categorization tasks.
Vision research. vol 51, 1318-1323.
- N. Friel and A.N. Pettitt. (2011) Classification via distance nearest neighbours. Statistics and Computing.
vol 21, 431-437. arXiv
- A. Caimo, N. Friel. (2011) Bayesian inference for exponential random graph models. Social Networks.
vol 33, 41-55. arXiv.
- P. Tong et al. (2010) Sequencing and analysis of an Irish human genome. Genome Biology, 11: R91 DOI: 10.1186/gb-2010-11-9-r91
- H. Austad and N.Friel. (2010) Deterministic Bayesian inference for the p* model. AISTATS, Journal of Machine
Learning Research: W&CP 9, 41-48. pdf
- S. Pandolfi and F. Bartolucci and N.Friel. (2010) A generalization of the Multiple-try Metropolis
algorithm for Bayesian estimation and model selection. AISTATS, Journal of Machine Learning Research: W&CP 9, 251-258.
pdf
- N. Friel, A.N. Pettitt, R. Reeves, and E. Wit. (2009)
Bayesian inference in hidden Markov random fields for binary data
defined on large lattices. Journal of Computational and Graphical Statistics. vol 18, 243-261.
abstract
- M. Salter-Townshend, J. Haslett, N. Friel. (2009) Discussion of Approximate Bayesian
inference for latent Gaussian models by using integrated nested Laplace approximations
by Rue, H., Chopin, N. and Martino, S. JRSSB.
- N. Friel, A.N. Pettitt. (2008) Marginal likelihood estimation via power
posteriors. Journal of the Royal Statistical Society, Series B. vol 70, 589-607.
abstract
- N. Friel, H. Rue. (2007) Recursive computing and simulation-free inference for
general factorizable models. Biometrika. vol. 94, 661-672.
abstract
- P.G. Ridall, A.N. Pettitt, N. Friel, P.A. McCombe and R. Henderson. (2007)
Motor unit number estimation using reversible jump Markov chain
Monte Carlo (with discussion). Journal of the Royal Statistical Society, Series C.,
vol 56, 235-269.
(Read before the Royal Statistical Society, 29th of November 2006.)
abstract
- P. Dellaportas, N. Friel, and G.O. Roberts. (2006) Bayesian model
selection for partially observed diffusion models. Biometrika, vol.93, 809-825.
abstract
- N. Friel and A.N. Pettitt. (2006) Discussion of Nested sampling
by J. Skilling Valencia 8, Oxford University Press.
- P.J. Ridall, A.N. Pettitt, N. Friel, P.A. McCombe and
R. Henderson. (2005)
A Bayesian method for motor unit number estimation for the tracking
of amyotropic lateral sclerosis using reversible jump Markov chain
Monte Carlo. 20th International Workshop on Statistical
Modelling, Sydney, 397-410.
- N. Friel, and A.N. Pettitt. (2004) Likelihood estimation and inference for the autologistic model. Journal
of computational and Graphical Statistics, vol. 13, 232-246.
- S.P. Brooks, N. Friel, and R. King. (2003). Classical model
selection via simulated annealing. Journal of the Royal Statistical
Society, Series B, vol. 65, part 2, 503-521.
- A.N. Pettitt, N. Friel, and R. Reeves. (2003) Efficient
calculation of the normalisation constant of the autologistic model on the
lattice. Journal of the Royal Statistical Society, Series B, vol. 65,
part 1, 235-247.
- E. Wit and N. Friel. (2003) Hidden Markov modelling of genomic
interactions. Bulletin of the International Statistical Institute, 54th
Session, August 2003.
- N. Friel. (2003) Discussion of Efficient construction of
reversible jump MCMC proposal distributions by Brooks, S.P., Giudici, P.
and Roberts, G.O. JRSSB.
- S.J. Grant, et al. (2003) The effect of ball carrying method
on sprint speed in Rugby union football players. Journal of Sports
Science, vol. 21, 12, 1009-1015.
- N. Friel, I.S. Molchanov. (1999) A new thresholding technique
based on random sets. Pattern Recognition, vol. 32, No. 9, 1507-1517.
- N. Friel, I.S. Molchanov. (1998)Distances between grey-scale images.
In H. Heijmans and J. Roerdink, editors, Mathematical Morphology and its
Applications to Image and Signal processing, 283-291, Dordrecht.
- N. Friel, I.S. Molchanov. (1998) A class of error metrics for grey-scale
images. In Proc. SPIE, Mathematical Modeling and Estimation Techniques in
Computer Vision. Vol. 3457, 194-202, San Diego, July, 1998.