User Tools

Site Tools


Plugin installed incorrectly. Rename plugin directory '_include' to 'include'.
Plugin installed incorrectly. Rename plugin directory '__include' to 'include'.
lecture_7_slides

This is an old revision of the document!



Warning: Undefined array key "do" in /home/levene/public_html/w/mst10030/lib/plugins/revealjs/syntax/theme.php on line 50

Warning: Undefined array key "do" in /home/levene/public_html/w/mst10030/lib/plugins/revealjs/action.php on line 14
→ Slide 1

Operations on matrices

  • Some (useful) ways of taking two matrices and making a new matrix.
  • $1\times 1$ matrices are the same as numbers….
  • ….we'll define some operations on matrices which generalise operations on numbers, like addition and multiplication
↓ Slide 2

Matrix addition and subtraction

If $A$ and $B$ are matrices of the same size, then $A+B$ is defined to be the matrix with the same size as $A$ and $B$ so that the $(i,j)$ entry of $A+B$ is $a_{ij}+b_{ij}$, for every $i,j$.

If $A$ and $B$ are matrices of different sizes, then $A+B$ is undefined.

↓ Slide 3

Examples

  • $ \left[\begin{smallmatrix}1&2&-2\\3&0&5\end{smallmatrix}\right]+\left[\begin{smallmatrix}-2&2&0\\1&1&1\end{smallmatrix}\right]=\left[\begin{smallmatrix}-1&4&-2\\4&1&6\end{smallmatrix}\right].$
  • $\left[\begin{smallmatrix}1&2&-2\\3&0&5\end{smallmatrix}\right]+\left[\begin{smallmatrix}-2&2\\1&1\end{smallmatrix}\right]\text{ is undefined.}$
↓ Slide 4

Remarks

  1. For any matrices $A$ and $B$ with the same size: $A+B=B+A$. We say that matrix addition is commutative.
  2. For any matrices $A$, $B$ and $C$ with the same size: $(A+B)+C=A+(B+C)$. We say that matrix addition is associative.
↓ Slide 5

The zero matrix

The $n\times m$ zero matrix is the $n\times m$ matrix so that every entry is $0$. We write this as $0_{n\times m}$. So \[ 0_{n\times m}=\begin{bmatrix} 0&0&\dots&0\\ 0&0&\dots&0\\ \vdots&\vdots&&\vdots\\ 0&0&\dots&0\end{bmatrix}\] where this matrix has $n$ rows and $m$ columns.

↓ Slide 6

Exercise

Show that if $A$ is any $n\times m$ matrix, then \[ 0_{n\times m}+A=A=A+0_{n\times m}.\]

  • Remember that when checking that matrices are equal, you have to check that they have the same size, and that all the entries are the same.
↓ Slide 7

Definition of matrix subtraction

If $A$ and $B$ are matrices of the same size, then $A-B$ is defined to be the matrix with the same size as $A$ and $B$ so that the $(i,j)$ entry of $A-B$ is $a_{ij}-b_{ij}$, for every $i,j$.

If $A$ and $B$ are matrices of different sizes, then $A-B$ is undefined.

↓ Slide 8

Examples

  • $ \left[\begin{smallmatrix}1&2&-2\\3&0&5\end{smallmatrix}\right]-\left[\begin{smallmatrix}-2&2&0\\1&1&1\end{smallmatrix}\right]=\left[\begin{smallmatrix}3&0&-2\\2&-1&4\end{smallmatrix}\right].$
  • $ \left[\begin{smallmatrix}1&2&-2\\3&0&5\end{smallmatrix}\right]-\left[\begin{smallmatrix}-2&2\\1&1\end{smallmatrix}\right]\text{ is undefined.}$
↓ Slide 9

Scalars

  • a scalar is just a fancy name for a number
    • (in this course: a real number)
  • Why use this strange-looking name?
    • numbers are often used for scaling things up or down
    • e.g. the scalar 3 is used to scale things up by a factor of 3 (by multiplying by 3).
↓ Slide 10

Scalar multiplication of matrices

If $c$ is a real number and $A$ is an $n\times m$ matrix, then we define the matrix $cA$ to be the $n\times m$ matrix given by multiplying every entry of $A$ by $c$. In other words, the $(i,j)$ entry of $cA$ is $ca_{i,j}$.

↓ Slide 11

Example

  • If $A=\left[\begin{smallmatrix}1&0&-3\\3&-4&1\end{smallmatrix}\right]$, then $3A=\left[\begin{smallmatrix}3&0&-9\\9&-12&3\end{smallmatrix}\right]$.
  • In other words, $ 3\left[\begin{smallmatrix}1&0&-3\\3&-4&1\end{smallmatrix}\right]=\left[\begin{smallmatrix}3&0&-9\\9&-12&3\end{smallmatrix}\right].$
↓ Slide 12

The negative of a matrix

We write $-A$ as a shorthand for $-1A$; so the $(i,j)$ entry of $-A$ is $-a_{ij}$. For example, \[ -\begin{bmatrix}-1&0&3\\3&-4&1\end{bmatrix}=\begin{bmatrix}1&0&-3\\-3&4&-1\end{bmatrix}.\]

↓ Slide 13

Exercise

Prove that $A-B=A+(-B)$ for any matrices $A$ and $B$ of the same size.

↓ Slide 14

Row-column multiplication

  • Let $a=[\begin{smallmatrix}a_1&a_2&\dots&a_n\end{smallmatrix}]$ be a $1\times n$ row vector and $b=\left[\begin{smallmatrix}b_1\\b_2\\\vdots\\b_n\end{smallmatrix}\right]$, an $n\times 1$ column vector.
  • The row-column product $ab$ of $a$ and $b$ is defined by \[\!\!\!\!\!ab=[\begin{smallmatrix}a_1&a_2&\dots&a_n\end{smallmatrix}]\left[\begin{smallmatrix}b_1\\b_2\\\vdots\\b_n\end{smallmatrix}\right]=a_1b_1+a_2b_2+\dots+a_nb_n.\]
  • Sometimes we write $a\cdot b$ instead of $ab$.
  • If $a$ and $b$ have a different number of entries, $ab$ is undefined.
↓ Slide 15

Examples

  • $\left[\begin{smallmatrix}1&2\end{smallmatrix}\right]\left[\begin{smallmatrix}3\\-1\end{smallmatrix}\right]=1\cdot 3+2\cdot(-1)=3+(-2)=1$.
  • $\left[\begin{smallmatrix}1&2&7\end{smallmatrix}\right]\left[\begin{smallmatrix}3\\-1\end{smallmatrix}\right]$ is not defined.
  • $\left[\begin{smallmatrix}2&3&5\end{smallmatrix}\right]\left[\begin{smallmatrix}x\\y\\z\end{smallmatrix}\right]=2x+3y+5z$.
  • Generalising the previous example: if $a=\left[\begin{smallmatrix}a_1&a_2&\dots&a_m\end{smallmatrix}\right]$ and $x=\left[\begin{smallmatrix}x_1\\x_2\\\vdots\\x_m\end{smallmatrix}\right]$, then $ax=a_1x_1+a_2x_2+\dots+a_mx_m$. So we can write any linear equation $a_1x_1+a_2x_2+\dots+a_mx_m=b$ as a shorter matrix equation: $ax=b$.
↓ Slide 16

Matrix multiplication

  • We want to define $AB$ where $A$ and $B$ are matrices of “compatible” sizes
  • This will generalise row-column multiplication
  • Idea is to build the new matrix $AB$ from all possible row-column products
  • Here's an example:\[ \def\r{\left[\begin{smallmatrix}1&0&5\end{smallmatrix}\right]}\def\rr{\left[\begin{smallmatrix}2&-1&3\end{smallmatrix}\right]}\left[\begin{smallmatrix}1&0&5\\2&-1&3\end{smallmatrix}\right]\left[\begin{smallmatrix} 1&2\\3&4\\5&6\end{smallmatrix}\right]\def\s{\left[\begin{smallmatrix}1\\3\\5\end{smallmatrix}\right]}\def\ss{\left[\begin{smallmatrix}2\\4\\6\end{smallmatrix}\right]}=\left[\begin{smallmatrix}{\r\s}&{\r\ss}\\{\rr\s}&{\rr\ss}\end{smallmatrix}\right]=\left[\begin{smallmatrix}26&32\\14&18\end{smallmatrix}\right].\]
lecture_7_slides.1455116141.txt.gz · Last modified: by rupert

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki