User Tools

Site Tools


Plugin installed incorrectly. Rename plugin directory '_include' to 'include'.
Plugin installed incorrectly. Rename plugin directory '__include' to 'include'.
lecture_6_slides

This is an old revision of the document!



Warning: Undefined array key "do" in /home/levene/public_html/w/mst10030/lib/plugins/revealjs/syntax/theme.php on line 50

Warning: Undefined array key "do" in /home/levene/public_html/w/mst10030/lib/plugins/revealjs/action.php on line 14
↓ Slide 1

Example 1

Solve the linear system \begin{align*}3x+4y-2z&=1\\x+y+z&=4\\2x+5y+z&=3\end{align*} by transforming the augmented matrix into reduced row echelon form.

\begin{align*} \def\go#1#2#3{\left[\begin{smallmatrix}#1\\#2\\#3\end{smallmatrix}\right]} \def\ar#1{\\\xrightarrow{#1}&} \go{3&4&-2&1}{1&1&1&4}{2&5&1&3} \xrightarrow{R1\leftrightarrow R2}& \go{1&1&1&4}{3&4&-2&1}{2&5&1&3} \ar{R2\to R2-3R1\text{ and }R3\to R3-2R1} \go{1&1&1&4}{0&1&-5&-11}{0&3&-1&-5} \ar{R3\to R3-3R1} \go{1&1&1&4}{0&1&-5&-11}{0&0&14&28} \ar{R3\to \tfrac1{14}R3} \go{1&1&1&4}{0&1&-5&-11}{0&0&1&2} \end{align*}

  • in REF, keep going for RREF…

\begin{align*} \go{1&1&1&4}{0&1&-5&-11}{0&0&1&2} \xrightarrow{R1\to R1-R3\text{ and }R2\to R2+5R3}& \go{1&1&0&2}{0&1&0&-1}{0&0&1&2} \ar{R1\to R1-R2} \go{1&0&0&3}{0&1&0&-1}{0&0&1&2} \end{align*}

  • $x=3$, $y=-1$, $z=2$
  • There is a unique solution: $(3,-1,2)$.
  • No free variables.
↓ Slide 2

Example 2

Solve the linear system \begin{align*}3x+y-2z+4w&=5\\x+z+w&=2\\4x+2y-6z+6w&=0\end{align*}

\begin{align*} \go{3&1&-2&4&5}{1&0&1&1&2}{4&2&-6&6&0} \xrightarrow{R1\leftrightarrow R2}& \go{1&0&1&1&2}{3&1&-2&4&5}{4&2&-6&6&0} \ar{R2\to R2-3R1\text{ and }R3\to R3-4R1} \go{1&0&1&1&2}{0&1&-5&1&-1}{0&2&-10&2&-8} \ar{R3\to R3-2R2} \go{1&0&1&1&2}{0&1&-5&1&-1}{0&0&0&0&-6} \ar{R3\to -\tfrac16 R3} \go{1&0&1&1&2}{0&1&-5&1&-1}{0&0&0&0&1} \end{align*}

\[ \go{1&0&1&1&2}{0&1&-5&1&-1}{0&0&0&0&1}\]

  • This is in REF.
  • The last row corresponds to the equation $0=1$
  • This has no solution!
  • So the original linear system has no solutions.
  • Call the system inconsistent (no solutions).
  • To detect this: put in REF and find a row $[0~0~\dots~0~1]$.
↓ Slide 3

Example 3

For which value(s) of $k$ does the following linear system have infinitely many solutions?

\begin{gather*}x+y+z=1\\x-z=5\\2x+3y+kz=-2\end{gather*}

\begin{align*} \go{1&1&1&1}{1&0&-1&5}{2&3&k&-2} \xrightarrow{R2\to R2-R1\text{ and }R3\to R3-2R1}& \go{1&1&1&1}{0&-1&-2&4}{0&1&k-2&-4} \ar{R2\to -R2} \go{1&1&1&1}{0&1&2&-4}{0&1&k-2&-4} \ar{R3\to R3-R2} \go{1&1&1&1}{0&1&2&-4}{0&0&k-4&0} \end{align*}

\[\go{1&1&1&1}{0&1&2&-4}{0&0&k-4&0}\]

  • If $k=4$:
    • get $\go{1&1&1&1}{0&1&2&-4}{0&0&0&0}$, in REF
    • $z$ free, so infinitely many solutions
  • If $k\ne4$ then $k-4\ne0$.
    • $R3\to \tfrac1{k-4}R3$: $\go{1&1&1&1}{0&1&2&-4}{0&0&1&0}$, in REF
    • no free vars, so not infinitely many solutions
  • So infinitely many solutions $\iff k=4$.
↓ Slide 4

Observations

For a system of linear equations with<html><br /></html> #vars variables, #eqs equations:

  • If #vars > #eqs, at least one var is free (see REF!)
    1. either system is inconsistent….
    2. ….or it has infinitely many solutions, one for each value of the free vars.
    3. The dimension of the set of solutions is the number of free variables.
  • If there's a unique solution:<html><br /></html>always have #vars ≤ #eqs
lecture_6_slides.1455020226.txt.gz · Last modified: by rupert

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki