User Tools

Site Tools


Plugin installed incorrectly. Rename plugin directory '_include' to 'include'.
Plugin installed incorrectly. Rename plugin directory '__include' to 'include'.
lecture_10_slides

This is an old revision of the document!



Warning: Undefined array key "do" in /home/levene/public_html/w/mst10030/lib/plugins/revealjs/syntax/theme.php on line 50

Warning: Undefined array key "do" in /home/levene/public_html/w/mst10030/lib/plugins/revealjs/action.php on line 14
↓ Slide 1

Last time

If $A$ is an invertible $n\times n$ matrix, then the unique $n\times n$ matrix $C$ with $AC=I_n=CA$ is called the inverse of $A$. If $A$ is invertible, then we write $A^{-1}$ to mean the (unique) inverse of $A$.

  • $\def\mat#1{\left[\begin{smallmatrix}#1\end{smallmatrix}\right]}A=\mat{2&4\\0&1}$ is invertible, and $A^{-1}=\mat{\tfrac12&-2\\0&1}$.
    • i.e. $\mat{2&4\\0&1}^{-1}=\mat{\tfrac12&-2\\0&1}$
  • if $a$ is a non-zero scalar, then $[a]^{-1}=[\tfrac 1a]$
  • $I_n^{-1}=I_n$ for any $n$
  • $0_{n\times n}^{-1}$, $\mat{1&0\\0&0}^{-1}$ and $\mat{1&2\\-3&-6}^{-1}$ do not exist
    • because these matrices aren't invertible
↓ Slide 2

Warning

If $A$, $B$ are matrices, then $\frac AB$ doesn't make sense!

  • Never write this down as it will almost always lead to mistakes.
  • In particular, $A^{-1}$ definitely doesn't mean $\frac 1A$. Never write this either!
↓ Slide 3

Proposition: solving $AX=B$ when $A$ is invertible

If $A$ is an invertible $n\times n$ matrix and $B$ is an $n\times k$ matrix, then $ AX=B$ has a unique solution: $X=A^{-1}B$.

Proof

  • First check that $X=A^{-1}B$ really is a solution:
    • $AX=A(A^{-1}B)=(AA^{-1})B=I_nB=B$ :-)
  • Uniqueness: suppose $X$ and $Y$ are both solutions
  • Then $AX=B$ and $AY=B$, so $AX=AY$.
  • Multiply both sides on the left by $A^{-1}$:
    • $A^{-1}AX=A^{-1}AY$, or $I_nX=I_n Y$, or $X=Y$.
  • So any two solutions are equal.■
↓ Slide 4

Corollary

If $A$ is an $n\times n$ matrix and there is a non-zero $n\times m$ matrix $K$ so that $AK=0_{n\times m}$, then $A$ is not invertible.

Proof

  • $AX=0_{n\times m}$ has (at least) two solutions:
    • $X=K$,
    • and $X=0_{n\times m}$
  • If $A$ was invertible, this would contradict the Proposition.
  • So $A$ cannot be invertible. ■
↓ Slide 5

Example

  • Let $A=\mat{1&2\\-3&-6}$. $A$ isn't invertible… why?
  • One column of $A$ is $2$ times the other… exploit this.
  • Let $K=\mat{-2\\1}$
  • $K$ is non-zero but $AK=\mat{1&2\\-3&-6}\mat{-2\\1}=\mat{0\\0}=0_{2\times 1}$
  • So $A$ is not invertible, by the Corollary.
↓ Slide 6

Example

  • $A=\mat{1&4&5\\2&5&7\\3&6&9}$ is not invertible
    • $X=\mat{1\\1\\-1}$ is non-zero
    • and $AX=0_{3\times 1}$.
→ Slide 7

$2\times 2$ matrices: determinants and invertibility

↓ Slide 8

Question

Which $2\times 2$ matrices are invertible? For the invertible matrices, can we find their inverse?

↓ Slide 9

Lemma

If $A=\mat{a&b\\c&d}$ and $J=\mat{d&-b\\-c&a}$, then we have \[ AJ=\delta I_2=JA\] where $\delta=ad-bc$.

  • Proof is a calculation!
↓ Slide 10

Definition: the determinant of a $2\times 2$ matrix

The number $ad-bc$ is called the determinant of the $2\times 2$ matrix $A=\mat{a&b\\c&d}$. We write $\det(A)=ad-bc$ for this number.

↓ Slide 11

Theorem: the determinant determines the invertibility (and inverse) of a $2\times 2$ matrix

Let $A=\mat{a&b\\c&d}$ be a $2\times 2$ matrix.

  1. $A$ is invertible if and only if $\det(A)\ne0$.
  2. If $A$ is invertible, then $A^{-1}=\frac{1}{\det(A)}\mat{d&-b\\-c&a}$.
↓ Slide 12

Proof

  • true for $A=0_{2\times 2}$!
  • Now suppose $A\ne0_{2\times 2}$. Let $J=\mat{d&-b\\-c&a}$.
  • By the previous lemma, $AJ=(\det(A))I_2=JA$.
  • If $\det(A)\ne0$, multiply by $\frac1{\det(A)}$ and write $B=\tfrac1{\det(A)}J$: \[ AB= A(\tfrac1{\det(A)}J)=I_2=(\tfrac1{\det(A)}J) A=BA\]
  • So $ AB=I_2=BA$, so $A$ invertible with inverse $B=\frac1{\det(A)}J=\frac1{\det(A)}\mat{d&-b\\-c&a}$.
  • If $\det(A)=0$, then $AJ=0_{2\times 2}$ and $J\ne 0_{2\times2}$ [why?]
  • Hence by the previous corollary, $A$ is not invertible in this case. ■
lecture_10_slides.1456772696.txt.gz · Last modified: by rupert

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki