Plugin installed incorrectly. Rename plugin directory '_include' to 'include'.
Plugin installed incorrectly. Rename plugin directory '__include' to 'include'.
lecture_5_slides
Differences
This shows you the differences between two versions of the page.
| Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
| lecture_5_slides [2016/02/08 18:49] – rupert | lecture_5_slides [2017/02/07 10:15] (current) – rupert | ||
|---|---|---|---|
| Line 1: | Line 1: | ||
| ~~REVEAL~~ | ~~REVEAL~~ | ||
| + | |||
| + | ===== The story so far... ===== | ||
| + | |||
| + | * Systems of linear equations | ||
| + | * The augmented matrix | ||
| + | * Elementary Row Operations (EROs) | ||
| + | * Row Echelon Form (REF) | ||
| + | * Reduced Row Echelon Form (RREF) | ||
| + | |||
| + | ===== Today ===== | ||
| + | |||
| + | - How to solve a system in REF or RREF | ||
| + | - How to find REF or RREF for a system | ||
| ===== Solving a system in REF or RREF ===== | ===== Solving a system in REF or RREF ===== | ||
| Line 19: | Line 32: | ||
| - | Solve the linear system for $\newcommand{\sm}{\left[\begin{smallmatrix}}\newcommand{\esm}{\end{smallmatrix}\right]} \sm 1& | + | Solve the linear system for $\newcommand{\sm}{\left[\begin{smallmatrix}}\newcommand{\esm}{\end{smallmatrix}\right]} \sm 1& |
| + | * Observe: it's in REF | ||
| * Free variables: $x_2$, $x_5$. Set $x_2=s$, $x_5=t$. | * Free variables: $x_2$, $x_5$. Set $x_2=s$, $x_5=t$. | ||
| * $ x_4+3x_5=4\implies x_4=4-3x_5=4-3t$ | * $ x_4+3x_5=4\implies x_4=4-3x_5=4-3t$ | ||
| Line 27: | Line 41: | ||
| * $ \left[\begin{smallmatrix} x_1\\x_2\\x_3\\x_4 \\x_5\end{smallmatrix}\right]= \left[\begin{smallmatrix} 5\\0\\1\\4\\0\end{smallmatrix}\right] +s\left[\begin{smallmatrix} -2\\1\\0\\0\\0\end{smallmatrix}\right] +t\left[\begin{smallmatrix} -6\\0\\2\\-3\\1\end{smallmatrix}\right], | * $ \left[\begin{smallmatrix} x_1\\x_2\\x_3\\x_4 \\x_5\end{smallmatrix}\right]= \left[\begin{smallmatrix} 5\\0\\1\\4\\0\end{smallmatrix}\right] +s\left[\begin{smallmatrix} -2\\1\\0\\0\\0\end{smallmatrix}\right] +t\left[\begin{smallmatrix} -6\\0\\2\\-3\\1\end{smallmatrix}\right], | ||
| * (A $2$-dimensional set in $5$-dimensional space $\mathbb{R}^5$). | * (A $2$-dimensional set in $5$-dimensional space $\mathbb{R}^5$). | ||
| + | |||
| + | ====== Gaussian elimination ====== | ||
| + | A systematic way to put an augmented matrix into REF or RREF using EROs | ||
| + | * REF=row echelon form | ||
| + | * RREF=reduced row echelon form | ||
| + | * ERO=elementary row operation | ||
| + | - reordering rows | ||
| + | - scaling a row | ||
| + | - combining two different rows | ||
| + | |||
| ===== Gaussian elimination 1 ===== | ===== Gaussian elimination 1 ===== | ||
| Line 49: | Line 73: | ||
| Use Gaussian elimination to solve the linear system | Use Gaussian elimination to solve the linear system | ||
| - | \begin{align*} 2x+y+3x+4w& | + | \begin{align*} 2x+y+3z+4w& |
| ==== ==== | ==== ==== | ||
| Line 101: | Line 125: | ||
| ==== Example ==== | ==== Example ==== | ||
| + | If $ f(x)=ax^2+bx+c$ and $f(1)=3$, $f(2)=2$ and $f(3)=4$, find $f(x)$. | ||
| - | A function | + | * $f(1)=3\implies |
| - | constants. Given that $f(1)=3$, $f(2)=2$ | + | * $f(2)=2\implies 4a+2b+c=2$ |
| + | * $f(3)=4\implies 9a+3b+c=4$ | ||
| + | * $\begin{gather*} | ||
| + | * Solve using RREF. | ||
| ==== ==== | ==== ==== | ||
| - | * $f(1)=3\implies a\cdot 1^2+b\cdot 1 +c = 3\implies a+b+c=3$ | ||
| - | * f(2)=2\implies a\cdot 2^2+b\cdot 2 +c = 3\implies 4a+2b+c=2$ | ||
| - | * $f(3)=4\implies a\cdot 3^2+b\cdot 3 +c = 3\implies 9a+3b+c=4$ | ||
| - | * We get a system of three linear equations in the variables $a, | ||
| - | * Let's reduce the augmented matrix for this system to RREF. | ||
| - | ==== ==== | ||
| - | |||
| - | |||
| - | |||
| \begin{align*} | \begin{align*} | ||
| - | &\go{1& | + | \go{1& |
| - | \ar{R2\to R2-4R1\text{ and }R3\to R3-9R1} | + | \xrightarrow{R2\to R2-4R1\text{ and }R3\to R3-9R1}& |
| \go{1& | \go{1& | ||
| \ar{R2\to -\tfrac12 R2} | \ar{R2\to -\tfrac12 R2} | ||
| Line 123: | Line 141: | ||
| \ar{R3\to R3+6R2} | \ar{R3\to R3+6R2} | ||
| \go{1& | \go{1& | ||
| - | \ar{R1\to R1-R3\text{ and }R2\to R2-\tfrac32R3} | + | \end{align*} |
| + | * So far: in REF! | ||
| + | |||
| + | ==== ==== | ||
| + | \begin{align*} | ||
| + | \go{1& | ||
| + | \xrightarrow{R1\to R1-R3\text{ and }R2\to R2-\tfrac32R3}& | ||
| \go{1& | \go{1& | ||
| \ar{R1\to R1-R2} | \ar{R1\to R1-R2} | ||
| \go{1& | \go{1& | ||
| \end{align*} | \end{align*} | ||
| - | So $a=1.5$, $b=-5.5$ and $c=7$; so | + | * So $a=1.5$, $b=-5.5$ and $c=7$ |
| - | \[ f(x)=1.5x^2-5.5x+7.\] | + | * So $f(x)=1.5x^2-5.5x+7$. |
lecture_5_slides.1454957342.txt.gz · Last modified: by rupert
