User Tools

Site Tools


Plugin installed incorrectly. Rename plugin directory '_include' to 'include'.
Plugin installed incorrectly. Rename plugin directory '__include' to 'include'.
lecture_3_slides

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
lecture_3_slides [2016/01/28 13:34] rupertlecture_3_slides [2016/02/01 17:29] (current) rupert
Line 1: Line 1:
 +~~REVEAL~~
 +
 ==== Another look at the last example ==== ==== Another look at the last example ====
   * $\begin{array}{ccccccrrr} x&+&3y&+&z&=&5&\quad&(1)\\ 2x&+&7y&+&4z&=&17&&(2)\end{array}$   * $\begin{array}{ccccccrrr} x&+&3y&+&z&=&5&\quad&(1)\\ 2x&+&7y&+&4z&=&17&&(2)\end{array}$
Line 13: Line 15:
 ==== ==== ==== ====
   * $\begin{array}{ccccccrrr} x&&&-&5z&=&-16&\quad&(1)\\ &&y&+&2z&=&7&&(2)\end{array}$   * $\begin{array}{ccccccrrr} x&&&-&5z&=&-16&\quad&(1)\\ &&y&+&2z&=&7&&(2)\end{array}$
-  * Can now easily rearrange (1) to find $x$ in terms of $z$, and we rearrange (2) to find $y$ in terms of $z$+  * can easily rearrange (1) to find $x$ in terms of $z$ 
 +  * can easily rearrange (2) to find $y$ in terms of $z$ 
   * Since $z$ can take any value, write $z=t$ where $t$ is a "free parameter"    * Since $z$ can take any value, write $z=t$ where $t$ is a "free parameter" 
   * (which means $t$ can be any real number, or $t\in \mathbb{R}$).   * (which means $t$ can be any real number, or $t\in \mathbb{R}$).
Line 30: Line 33:
   * take $t=1.5$ to see that $(-16+1.5\times 5,7+1.5\times (-2),1.5) = (-8.5,4,1.5)$ is another solution   * take $t=1.5$ to see that $(-16+1.5\times 5,7+1.5\times (-2),1.5) = (-8.5,4,1.5)$ is another solution
   * etc.   * etc.
-  * This works for any value $t\in\mathbb{R}$, and every solution may be written in this way+  * This works for any value $t\in\mathbb{R}$, and every solution may be written in this way.
  
 ==== Observations ==== ==== Observations ====
  
   - The operations we applied to the original linear system don't change the set of solutions. This is because each operation is reversible.   - The operations we applied to the original linear system don't change the set of solutions. This is because each operation is reversible.
-  - Writing out the variables $x,y,z$ each time is unnecessary. If we erase the variables from the system $$\begin{array}{ccccccrrr} x&+&3y&+&z&=&5&\quad&(1)\\ 2x&+&7y&+&4z&=&17&&(2)\end{array}$$ and write all the numbers in a grid, or a **matrix**we get $\begin{bmatrix} 1&3&1&5\\2&7&4&17\end{bmatrix}$+  - Writing out the variables $x,y,z$ each time is unnecessary
 + 
 +  * erase the variables from the system $$\begin{array}{ccccccrrr} x&+&3y&+&z&=&5&\quad&(1)\\ 2x&+&7y&+&4z&=&17&&(2)\end{array}$$  
 +  * write all the numbers in a grid, or a **matrix** 
 +  * we get $\begin{bmatrix} 1&3&1&5\\2&7&4&17\end{bmatrix}$
  
 ==== ==== ==== ====
   * System of linear equations: $\begin{array}{ccccccrrr} x&+&3y&+&z&=&5&\quad&(1)\\ 2x&+&7y&+&4z&=&17&&(2)\end{array}$   * System of linear equations: $\begin{array}{ccccccrrr} x&+&3y&+&z&=&5&\quad&(1)\\ 2x&+&7y&+&4z&=&17&&(2)\end{array}$
   * $\begin{bmatrix} 1&3&1&5\\2&7&4&17\end{bmatrix}$ is called the **augmented matrix** of this linear system   * $\begin{bmatrix} 1&3&1&5\\2&7&4&17\end{bmatrix}$ is called the **augmented matrix** of this linear system
-  * Each row corresponds to one equation. +  * Each **row** corresponds to one **equation**
-  * The first column corresponds to the $x$ variable, the second to $y$, the third to $z$ +  * Each **column** corresponds to one **variable** 
-  Numbers in the final column are the right hand sides of the equations +    (except the last column, which has the right-hand-sides of the equations) 
-  * Instead of performing operations on equations, we can perform operations on the rows of this matrix.+  * Instead of performing operations on equations, **we can perform operations on the rows of this matrix**.
  
 ==== ==== ==== ====
Line 61: Line 68:
 This method always works:  This method always works: 
   * take any system of linear equations   * take any system of linear equations
-  * write down a corresponding matrix +  * write down a corresponding matrix (the **augmented matrix**) 
-  * perform certain reversible operations on the rows of this matrix to get a new matrix+  * perform reversible operations on the rows of this matrix to get a "nicer" matrix
   * write down a new system of linear equations with the same solutions as the original system.    * write down a new system of linear equations with the same solutions as the original system. 
-  * If we do things in a sensible way then the new system will be easy to solve, so we'll be able to solve the original system (since the solutions are identical). +  * Hopefully the new system will be easy to solve... 
-  * Let's give some terminology which will allow us to explain this clearly.+  * and the solutions haven't changed, so we'll have solved the original system! 
  
 ===== The augmented matrix and elementary operations ===== ===== The augmented matrix and elementary operations =====
Line 86: Line 94:
 ==== Why do elementary operations leave the solutions of systems unchanged? ==== ==== Why do elementary operations leave the solutions of systems unchanged? ====
  
-  * we are doing the same thing to the left hand side and the right hand side of each equationso any solution to the original system will also be a solution to the new system; and +  * We do the same thing to the left hand side and the right hand side of each equation... 
-  * these operations are reversibleusing operations of the same typeso any solution to the new system will also be a solution to the original system.+    * so any solution to the original system will also be a solution to the new system. 
 +  * These operations are all reversible (using operations of the same type)... 
 +    * so any solution to the new system will also be a solution to the original system. 
 ==== Elementary row operations on a matrix ==== ==== Elementary row operations on a matrix ====
  
 {{page>elementary row operation for slides}} {{page>elementary row operation for slides}}
 +
 +==== Example ====
 +
 +Use [[EROs]] to find the intersection of the planes
 +\begin{align*} 3x+4y+7z&=2\\x+3z&=0\\y-2z&=5\end{align*}
 +
 +==== Solution 1 ====
 +
 +\begin{align*} 
 +\def\go#1#2#3{\left[\begin{smallmatrix}#1\\#2\\#3\end{smallmatrix}\right]}
 +\def\ar#1{\\\xrightarrow{#1}&}
 +&\go{3&4&7&2}{1&0&3&0}{0&1&-2&5}
 +\ar{\text{reorder rows}}\go{1&0&3&0}{0&1&-2&5}{3&4&7&2}
 +\ar{R3\to R3-3R1}\go{1&0&3&0}{0&1&-2&5}{0&4&-2&2}
 +\ar{R3\to R3-4R2}\go{1&0&3&0}{0&1&-2&5}{0&0&6&-18}
 +\ar{R3\to \tfrac16 R3}\go{1&0&3&0}{0&1&-2&5}{0&0&1&-3}
 +\end{align*}
 +
 +==== ====
 +
 +$\go{1&0&3&0}{0&1&-2&5}{0&0&1&-3}$
 +
 +  * from the last row, we get $z=-3$
 +  * from the second row, we get $y-2z=5$
 +    * so $y-2(-3)=5$
 +    * so $y=-1$
 +  * from the first row, we get $x+3z=0$
 +    * so $x+3(-3)=0$
 +    * so $x=9$
 +  * Conclusion: $\begin{bmatrix}x\\y\\z\end{bmatrix}=\begin{bmatrix}9\\-1\\-3\end{bmatrix}$ is the only solution.
 +
 +==== Solution 2 ====
 +
 +We start in the same way, but by performing more [[EROs]] we make the algebra at the end simpler.
 +
 +\begin{align*} 
 +\def\go#1#2#3{\left[\begin{smallmatrix}#1\\#2\\#3\end{smallmatrix}\right]}
 +\def\ar#1{\\\xrightarrow{#1}&}
 +&\go{3&4&7&2}{1&0&3&0}{0&1&-2&5}
 +\ar{\ldots \text{same EROs as above}\ldots}\go{1&0&3&0}{0&1&-2&5}{0&0&1&-3}
 +\ar{R2\to R2+2R3}\go{1&0&3&0}{0&1&0&-1}{0&0&1&-3}
 +\ar{R1\to R1-3R3}\go{1&0&0&9}{0&1&0&-1}{0&0&1&-3}
 +\end{align*}
 +
 +==== ====
 +\[ \go{1&0&0&9}{0&1&0&-1}{0&0&1&-3}\]
 +
 +  * from the last row, we get $z=-3$
 +  * from the second row, we get $y=-1$
 +  * from the first row, we get $x=9$
 +  * So $\begin{bmatrix}x\\y\\z\end{bmatrix}=\begin{bmatrix}9\\-1\\-3\end{bmatrix}$ is the only solution.
 +
 +==== Discussion ====
 +
 +Both solutions use EROs to transform the [[augmented matrix]].
 +
 +  * Solution 1: $\left[\begin{smallmatrix}1&0&3&0\\0&1&-2&5\\0&0&1&-3\end{smallmatrix}\right]$.
 +    * "Staircase pattern": 1s on "steps", zeros below steps
 +    * Called **row echelon form** 
 +    * Needed algebra to finish solution.
 +  * Solution 2: $\left[\begin{smallmatrix}1&0&0&9\\0&1&0&-1\\0&0&1&-3\end{smallmatrix}\right]$ 
 +    * Staircase with zeros **above** 1s on steps (and below).
 +    * Called **reduced row echelon form**
 +    * No extra algebra needed to finish solution.
 +
lecture_3_slides.1453988053.txt.gz · Last modified: by rupert

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki