Plugin installed incorrectly. Rename plugin directory '_include' to 'include'.
Plugin installed incorrectly. Rename plugin directory '__include' to 'include'.
lecture_19_slides
Differences
This shows you the differences between two versions of the page.
| Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
| lecture_19_slides [2017/04/06 10:15] – [Example] rupert | lecture_19_slides [2017/04/11 09:56] (current) – [Corollary: the length of $\vec v\times\vec w$] rupert | ||
|---|---|---|---|
| Line 5: | Line 5: | ||
| * Dot product: $\vec v\cdot\vec w=v_1w_1+v_2w_2+\dots + v_nw_n$ | * Dot product: $\vec v\cdot\vec w=v_1w_1+v_2w_2+\dots + v_nw_n$ | ||
| * Geometric formula: $\vec v\cdot \vec w = \|\vec v\|\,\|\vec w\|\, | * Geometric formula: $\vec v\cdot \vec w = \|\vec v\|\,\|\vec w\|\, | ||
| + | * $\|\vec v\|=$length of $\vec v$ $=\sqrt{v_1^2+\dots+v_n^2}$ | ||
| + | * $\|\vec w\|=$length of $\vec w$ $=\sqrt{w_1^2+\dots+w_n^2}$ | ||
| + | * $\theta=$angle between $\vec v$ and $\vec w$ | ||
| * $\vec v$ and $\vec w$ are orthogonal (at right-angles) if $\vec v\cdot \vec w=0$ | * $\vec v$ and $\vec w$ are orthogonal (at right-angles) if $\vec v\cdot \vec w=0$ | ||
| Line 19: | Line 22: | ||
| * We write $\pp=\def\ppp{\text{proj}_{\ww}\vv}\ppp$. | * We write $\pp=\def\ppp{\text{proj}_{\ww}\vv}\ppp$. | ||
| - | * $\nn=\vv-\pp$ is **the component of $\vv$ orthogonal to $\ww$**. | + | * $\nn=\vv-\pp$ is called |
| ==== Formula for $\pp=\ppp$ ==== | ==== Formula for $\pp=\ppp$ ==== | ||
| - | * $\pp$ same direction as $\ww$, so $\pp=c\ww$, some scalar $c$ | ||
| * $\nn=\vv-\pp$ is orthogonal to $\ww$, so $\nn\cdot \ww=0$. | * $\nn=\vv-\pp$ is orthogonal to $\ww$, so $\nn\cdot \ww=0$. | ||
| * so $(\vv-\pp)\cdot \ww=0$ | * so $(\vv-\pp)\cdot \ww=0$ | ||
| * so $\vv\cdot\ww-\pp\cdot\ww=0$ | * so $\vv\cdot\ww-\pp\cdot\ww=0$ | ||
| * so $\pp\cdot\ww=\vv\cdot\ww$ | * so $\pp\cdot\ww=\vv\cdot\ww$ | ||
| + | * $\pp$ in same direction as $\ww$, so $\color{blue}{\pp=c\ww}$ for some scalar $c$ | ||
| * so $c\ww\cdot \ww=\vv\cdot\ww$ | * so $c\ww\cdot \ww=\vv\cdot\ww$ | ||
| * so $c\|\ww\|^2=\vv\cdot\ww$ | * so $c\|\ww\|^2=\vv\cdot\ww$ | ||
| Line 61: | Line 64: | ||
| * Let $\def\vc# | * Let $\def\vc# | ||
| * $\vv\times\ww$ is another vector in $\mathbb{R}^3$, | * $\vv\times\ww$ is another vector in $\mathbb{R}^3$, | ||
| - | * ... defined as the determinant $\vv\times\ww=\def\cp# | + | * ... defined as the determinant $\color{blue}{\vv\times\ww=\def\cp# |
| * Interpret this by Laplace expansion along row 1:\[\cpc vw=\def\vm# | * Interpret this by Laplace expansion along row 1:\[\cpc vw=\def\vm# | ||
| + | |||
| ==== Example ==== | ==== Example ==== | ||
| Line 93: | Line 97: | ||
| * Calculations/ | * Calculations/ | ||
| - | ==== Theorem ==== | + | ==== Theorem: cross and dot product formula |
| For any vectors $\vv$ and $\ww$ in $\mathbb{R}^3$, | For any vectors $\vv$ and $\ww$ in $\mathbb{R}^3$, | ||
| \[ \|\vv\times\ww\|^2+(\vv\cdot\ww)^2=\|\vv\|^2\, | \[ \|\vv\times\ww\|^2+(\vv\cdot\ww)^2=\|\vv\|^2\, | ||
| Line 103: | Line 107: | ||
| For any vectors $\vv$ and $\ww$ in $\mathbb{R}^3$, | For any vectors $\vv$ and $\ww$ in $\mathbb{R}^3$, | ||
| \[ \|\vv\times\ww\|=\|\vv\|\, | \[ \|\vv\times\ww\|=\|\vv\|\, | ||
| - | where $\theta$ is the angle between $\vv$ and $\ww$ (with $0\le\theta<\pi$). | + | where $\theta$ is the angle between $\vv$ and $\ww$ (with $0\le\theta\le\pi$). |
| === Proof === | === Proof === | ||
| - | * We know that $\vv\cdot\ww=\|\vv\|\, | + | * Geometric dot product formula: |
| + | * $\times$ & $\cdot$ formula: $\|\vv\times\ww\|^2+(v\cdot w)^2=\|\vv\|^2\, | ||
| * So $\|\vv\times\ww\|^2=\|\vv\|^2\, | * So $\|\vv\times\ww\|^2=\|\vv\|^2\, | ||
| * $=\|\vv\|^2\, | * $=\|\vv\|^2\, | ||
| * $=\|\vv\|^2\, | * $=\|\vv\|^2\, | ||
| * $=\|\vv\|^2\, | * $=\|\vv\|^2\, | ||
| - | * $\sin\theta\ge0$ for $0\le\theta<\pi$, so taking square roots of both sides gives $ \|\vv\times\ww\|=\|\vv\|\, | + | * $\sin\theta\ge0$ for $0\le\theta\le\pi$, so taking square roots of both sides gives $ \|\vv\times\ww\|=\|\vv\|\, |
| ===== Geometry of the cross product ===== | ===== Geometry of the cross product ===== | ||
lecture_19_slides.1491473751.txt.gz · Last modified: by rupert
