User Tools

Site Tools


Plugin installed incorrectly. Rename plugin directory '_include' to 'include'.
Plugin installed incorrectly. Rename plugin directory '__include' to 'include'.
lecture_7b

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
lecture_7b [2015/02/10 11:34] rupertlecture_7b [2016/02/09 12:25] (current) rupert
Line 9: Line 9:
 === Examples === === Examples ===
  
-  * If $B=\begin{bmatrix} 99&3&5\\7&-20&14\end{bmatrix}$, then $B$ is a $2\times 3$ matrix, and the $(1,1)$ entry of $B$ is $b_{11}=99$, the $(1,3)$ entry of $B$ is $b_{13}=5$, then $(2,1)$ entry is $b_{21}=7$, etc.+  * If $B=\begin{bmatrix} 99&3&5\\7&-20&14\end{bmatrix}$, then $B$ is a $2\times 3$ matrix, and the $(1,1)$ entry of $B$ is $b_{11}=99$, the $(1,3)$ entry of $B$ is $b_{13}=5$, the $(2,1)$ entry is $b_{21}=7$, etc.
   * $\begin{bmatrix}3\\2\\4\\0\\-1\end{bmatrix}$ is a $5\times 1$ matrix. A matrix like this with one column is called a **column vector**.   * $\begin{bmatrix}3\\2\\4\\0\\-1\end{bmatrix}$ is a $5\times 1$ matrix. A matrix like this with one column is called a **column vector**.
   * $\begin{bmatrix}3&2&4&0&-1\end{bmatrix}$ is a $1\times 5$ matrix. A matrix like this with one row is called a **row vector**.   * $\begin{bmatrix}3&2&4&0&-1\end{bmatrix}$ is a $1\times 5$ matrix. A matrix like this with one row is called a **row vector**.
Line 21: Line 21:
 === Definition === === Definition ===
  
-Two matrices $A$ and $B$ are said to be **equal** if both of the following conditions hold: +{{page>equal matrices}}
- +
-  * $A$ and $B$ have the same size; and +
-  * every entry of $A$ is equal to the corresponding entry of $B$; in other words, for every $(i,j)$ so that $A$ and $B$ have an $(i,j)$ entry, we have $a_{ij}=b_{ij}$. +
- +
-When $A$ and $B$ are equal matrices, we write $A=B$. Otherwise, we write $A\ne B$.+
  
 === Examples === === Examples ===
  
   * $\begin{bmatrix}3\\2\\4\\0\\-1\end{bmatrix}\ne \begin{bmatrix}3&2&4&0&-1\end{bmatrix}$, since these matrices have different sizes: the first is $5\times 1$ but the second is $1\times 5$.   * $\begin{bmatrix}3\\2\\4\\0\\-1\end{bmatrix}\ne \begin{bmatrix}3&2&4&0&-1\end{bmatrix}$, since these matrices have different sizes: the first is $5\times 1$ but the second is $1\times 5$.
 +==== ====
   * $\begin{bmatrix}1\\2\end{bmatrix}\ne\begin{bmatrix}1 &0\\2&0\end{bmatrix}$ since these matrices are not the same size.   * $\begin{bmatrix}1\\2\end{bmatrix}\ne\begin{bmatrix}1 &0\\2&0\end{bmatrix}$ since these matrices are not the same size.
   * $\begin{bmatrix}1&0\\0&1\end{bmatrix}\ne \begin{bmatrix}1&0\\1&0\end{bmatrix}$ because even though they have the same size, the $(2,1)$ entries are different.   * $\begin{bmatrix}1&0\\0&1\end{bmatrix}\ne \begin{bmatrix}1&0\\1&0\end{bmatrix}$ because even though they have the same size, the $(2,1)$ entries are different.
   * If $\begin{bmatrix}3x&7y+2\\8z-3&w^2\end{bmatrix}=\begin{bmatrix}1&2z\\\sqrt2&9\end{bmatrix}$ then we know that all the corresponding entries are equal, so we get four equations:\begin{align*}3x&=1\\7y+2&=2z\\8z-3&=\sqrt2\\w^2&=9\end{align*}   * If $\begin{bmatrix}3x&7y+2\\8z-3&w^2\end{bmatrix}=\begin{bmatrix}1&2z\\\sqrt2&9\end{bmatrix}$ then we know that all the corresponding entries are equal, so we get four equations:\begin{align*}3x&=1\\7y+2&=2z\\8z-3&=\sqrt2\\w^2&=9\end{align*}
lecture_7b.1423568085.txt.gz · Last modified: by rupert

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki