User Tools

Site Tools


Plugin installed incorrectly. Rename plugin directory '_include' to 'include'.
Plugin installed incorrectly. Rename plugin directory '__include' to 'include'.
lecture_6_slides

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
lecture_6_slides [2016/02/09 12:14] rupertlecture_6_slides [2017/02/08 17:34] (current) rupert
Line 1: Line 1:
 ~~REVEAL~~ ~~REVEAL~~
 +
 +===== Solving linear systems. Examples; how many solutions? =====
 +
 +==== More examples ====
  
 ==== Example 1 ==== ==== Example 1 ====
 +If $ f(x)=ax^2+bx+c$ and $f(1)=3$, $f(2)=2$ and $f(3)=4$, find $f(x)$.
 +
 +  * $f(1)=3\implies a+b+c=3$
 +  * $f(2)=2\implies 4a+2b+c=2$
 +  * $f(3)=4\implies 9a+3b+c=4$
 +  * $\begin{gather*}  a+b+c=3\\4a+2b+c=2\\9a+3b+c=4\end{gather*}$ 
 +  * Solve using RREF.
 +==== ====
 +\begin{align*}\def\go#1#2#3{\left[\begin{smallmatrix}#1\\#2\\#3\end{smallmatrix}\right]}
 +\def\ar#1{\\\xrightarrow{#1}&
 +\go{1&1&1&3}{4&2&1&2}{9&3&1&4}
 +\xrightarrow{R2\to R2-4R1\text{ and }R3\to R3-9R1}&
 +\go{1&1&1&3}{0&-2&-3&-10}{0&-6&-8&-23}
 +\ar{R2\to -\tfrac12 R2}
 +\go{1&1&1&3}{0&1&\tfrac32&5}{0&-6&-8&-23}
 +\ar{R3\to R3+6R2}
 +\go{1&1&1&3}{0&1&\tfrac32&5}{0&0&1&7}
 +\end{align*}
 +  * So far: in REF!
 +
 +==== ====
 +\begin{align*}
 +\go{1&1&1&3}{0&1&\tfrac32&5}{0&0&1&7}
 +\xrightarrow{R1\to R1-R3\text{ and }R2\to R2-\tfrac32R3}&
 +\go{1&1&0&-4}{0&1&0&-5.5}{0&0&1&7}
 +\ar{R1\to R1-R2}
 +\go{1&0&0&1.5}{0&1&0&-5.5}{0&0&1&7}
 +\end{align*}
 +  * So $a=1.5$, $b=-5.5$ and $c=7$
 +  * So $f(x)=1.5x^2-5.5x+7$.
 +
 +
 +==== Example 2 ====
  
 Solve the linear system Solve the linear system
Line 36: Line 73:
   * No free variables.   * No free variables.
  
-==== Example ====+==== Example ====
  
 Solve the linear system Solve the linear system
Line 64: Line 101:
   * To detect this: put in REF and find a row $[0~0~\dots~0~1]$.   * To detect this: put in REF and find a row $[0~0~\dots~0~1]$.
  
-==== Example ====+==== Example ====
  
 For which value(s) of $k$ does the following linear system have For which value(s) of $k$ does the following linear system have
Line 95: Line 132:
 #vars variables, #eqs equations: #vars variables, #eqs equations:
  
-  * If #vars > #eqs, at least one var is free (in REF!)+  * If #vars > #eqs, at least one var is free (see REF!)
     - either system is inconsistent....     - either system is inconsistent....
     - ....or it has infinitely many solutions, one for each value of the free vars.     - ....or it has infinitely many solutions, one for each value of the free vars.
     - The **dimension** of the set of solutions is the number of free variables.     - The **dimension** of the set of solutions is the number of free variables.
-  * If there's a **unique** solution: always have #vars ≤ #eqs +  * If there's a **unique** solution:<html><br /></html>always have #vars ≤ #eqs  
 + 
 + 
 +====== Chapter 2: The algebra of matrices ====== 
 + 
 +==== ==== 
 +{{page>matrix}} 
 + 
 +  * {{page>(i,j) entry}} 
 + 
 +==== Examples ==== 
 + 
 +  * $B=\begin{bmatrix} 99&3&5\\7&-20&14\end{bmatrix}$ is a $2\times 3$ matrix 
 +    * the $(1,1)$ entry of $B$ is $b_{11}=99$ 
 +    * the $(1,3)$ entry of $B$ is $b_{13}=5$ 
 +    * the $(2,1)$ entry of $B$ is $b_{21}=7$ 
 +    * etc. 
 +  * $(3,2)$ entry of $B$? 
 +    * undefined! 
 +==== ===== 
 +  * $\left[\begin{smallmatrix}3\\2\\4\\0\\-1\end{smallmatrix}\right]$ is a $5\times 1$ matrix.  
 +    * A matrix like this with one column is called a **column vector**. 
 +  * $\begin{bmatrix}3&2&4&0&-1\end{bmatrix}$ is a $1\times 5$ matrix.  
 +    * A matrix like this with one row is called a **row vector**. 
 +  * Even though these have the same entries, they have a different "shape", or "size" and they are different matrices.  
 + 
 +==== Size of a matrix ==== 
 + 
 +{{page>same size}} 
 + 
 +==== Equality of matrices ==== 
 + 
 +{{page>equal matrices}} 
 + 
 +==== Examples ==== 
 + 
 +  * $\begin{bmatrix}3\\2\\4\\0\\-1\end{bmatrix}\ne \begin{bmatrix}3&2&4&0&-1\end{bmatrix}$, since these matrices have different sizes: the first is $5\times 1$ but the second is $1\times 5$. 
 +==== ==== 
 +  * $\begin{bmatrix}1\\2\end{bmatrix}\ne\begin{bmatrix}1 &0\\2&0\end{bmatrix}$  
 +    * not the same size. 
 +  * $\begin{bmatrix}1&0\\0&1\end{bmatrix}\ne \begin{bmatrix}1&0\\1&1\end{bmatrix}$  
 +    * same size but the $(2,1)$ entries are different. 
 +==== ==== 
 +  * If $\begin{bmatrix}3x&7y+2\\8z-3&w^2\end{bmatrix}=\begin{bmatrix}1&2z\\\sqrt2&9\end{bmatrix}$ then we know that all the corresponding entries are equal 
 +  * We get four equations:\begin{align*}3x&=1\\7y+2&=2z\\8z-3&=\sqrt2\\w^2&=9\end{align*}
lecture_6_slides.1455020098.txt.gz · Last modified: by rupert

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki