User Tools

Site Tools


Plugin installed incorrectly. Rename plugin directory '_include' to 'include'.
Plugin installed incorrectly. Rename plugin directory '__include' to 'include'.
lecture_2_slides_static

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
lecture_2_slides_static [2016/01/25 10:31] rupertlecture_2_slides_static [2016/01/25 10:34] (current) rupert
Line 12: Line 12:
  
 ==== ==== ==== ====
-  * $x+y=1$ This may be viewed as a linear equation in 3 variables, since it is equivalent to $x+y+0z=1$. <html><iframe scrolling="no" src="https://tube.geogebra.org/material/iframe/id/529043/width/800/height/503/border/888888/rc/true/ai/false/sdz/true/smb/false/stb/true/stbh/true/ld/false/sri/true/at/auto" width="800px" height="503px" style="border:0px;"> </iframe></html>+  * $x+y=1$ This may be viewed as a linear equation in 3 variables, since it is equivalent to $x+y+0z=1$.  
 +  * {{::xy1.png?nolink&600|}}
  
 ==== ==== ==== ====
-  * $z=1$, viewed as the equation $0x+0y+z=1$ <html><iframe scrolling="no" src="https://tube.geogebra.org/material/iframe/id/529069/width/800/height/503/border/888888/rc/true/ai/false/sdz/true/smb/false/stb/true/stbh/true/ld/false/sri/true/at/auto" width="800px" height="503px" style="border:0px;"> </iframe><br /></html>This plane is horizontal (parallel to the $x$-$y$ plane).+  * $z=1$, viewed as the equation $0x+0y+z=1$ 
 +  * {{::z1.png?nolink&600|}}
  
 ==== Linear equations (in general) ==== ==== Linear equations (in general) ====
Line 38: Line 40:
 $ x+3y+z=5$ and $ 2x+7y+4z=17$. $ x+3y+z=5$ and $ 2x+7y+4z=17$.
  
-  * <html><iframe scrolling="no" src="https://tube.geogebra.org/material/iframe/id/529147/width/800/height/503/border/888888/rc/true/ai/false/sdz/true/smb/false/stb/true/stbh/true/ld/false/sri/true/at/auto" width="800px" height="503px" style="border:0px;"> </iframe></html>+  * {{::intersection.png?nolink&600|}}
  
 ==== Intersection of $ x+3y+z=5$ and $ 2x+7y+4z=17$ ==== ==== Intersection of $ x+3y+z=5$ and $ 2x+7y+4z=17$ ====
Line 45: Line 47:
   * Eliminating variables, we get $x=-16+5z$, $y=7-2z$   * Eliminating variables, we get $x=-16+5z$, $y=7-2z$
   * The line of intersection consists of the points $(-16+5z,7-2z,z)$, where $z\in\mathbb{R}$   * The line of intersection consists of the points $(-16+5z,7-2z,z)$, where $z\in\mathbb{R}$
 +
lecture_2_slides_static.1453717863.txt.gz · Last modified: by rupert

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki