User Tools

Site Tools


Plugin installed incorrectly. Rename plugin directory '_include' to 'include'.
Plugin installed incorrectly. Rename plugin directory '__include' to 'include'.
lecture_2_slides

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Next revision
Previous revision
lecture_2_slides [2016/01/24 21:45] – created rupertlecture_2_slides [2017/01/25 10:51] (current) rupert
Line 44: Line 44:
   * Eliminating variables, we get $x=-16+5z$, $y=7-2z$   * Eliminating variables, we get $x=-16+5z$, $y=7-2z$
   * The line of intersection consists of the points $(-16+5z,7-2z,z)$, where $z\in\mathbb{R}$   * The line of intersection consists of the points $(-16+5z,7-2z,z)$, where $z\in\mathbb{R}$
 +
 +==== A detailed look at the last example ====
 +  * $\begin{array}{ccccccrrr} x&+&3y&+&z&=&5&\quad&(1)\\ 2x&+&7y&+&4z&=&17&&(2)\end{array}$
 +  * Find solutions of this [[system of linear equations|system]] by applying operations
 +  * Aim to end up with a very simple sort of system where we can see the solutions easily.
 +
 +==== ====
 +  * $\begin{array}{ccccccrrr} x&+&3y&+&z&=&5&\quad&(1)\\ 2x&+&7y&+&4z&=&17&&(2)\end{array}$
 +  * Replace equation (2) with $(2)-2\times (1)$:
 +  * $\begin{array}{ccccccrrr} x&+&3y&+&z&=&5&\quad&(1)\\ &&y&+&2z&=&7&&(2)\end{array}$
 +  * Now replace equation (1) with $(1)-3\times (2)$
 +  * $\begin{array}{ccccccrrr} x&&&-&5z&=&-16&\quad&(1)\\ &&y&+&2z&=&7&&(2)\end{array}$
 +
 +==== ====
 +  * $\begin{array}{ccccccrrr} x&&&-&5z&=&-16&\quad&(1)\\ &&y&+&2z&=&7&&(2)\end{array}$
 +  * can easily rearrange (1) to find $x$ in terms of $z$
 +  * can easily rearrange (2) to find $y$ in terms of $z$ 
 +  * Since $z$ can take any value, write $z=t$ where $t$ is a "free parameter" 
 +  * (which means $t$ can be any real number, or $t\in \mathbb{R}$).
 +  * Solution: \begin{align*} x&=-16+5t\\ y&=7-2t\\ z&=t,\qquad t\in \mathbb{R}\end{align*}
 +
 +==== ====
 +  * Solution: \begin{align*} x&=-16+5t\\ y&=7-2t\\ z&=t,\qquad t\in \mathbb{R}\end{align*}
 +  * Can also write this in "vector form":
 +  * $\begin{bmatrix} x\\y\\z\end{bmatrix}=\begin{bmatrix} -16\\7\\0\end{bmatrix}+t\begin{bmatrix} 5\\-2\\1\end{bmatrix},\qquad t\in \mathbb{R}.$
 +  * This is the equation of the line where the two planes described by the original equations intersect.
 +
 +==== ====
 +  * $\begin{bmatrix} x\\y\\z\end{bmatrix}=\begin{bmatrix} -16\\7\\0\end{bmatrix}+t\begin{bmatrix} 5\\-2\\1\end{bmatrix},\qquad t\in \mathbb{R}$
 +  * For each value of $t$, we get a different solution (a different point on the line of intersection). 
 +  * e.g. take $t=0$ to see that $(-16,7,0)$ is a solution
 +  * take $t=1.5$ to see that $(-16+1.5\times 5,7+1.5\times (-2),1.5) = (-8.5,4,1.5)$ is another solution
 +  * etc.
 +  * This works for any value $t\in\mathbb{R}$, and every solution may be written in this way.
lecture_2_slides.1453671952.txt.gz · Last modified: by rupert

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki