User Tools

Site Tools


Plugin installed incorrectly. Rename plugin directory '_include' to 'include'.
Plugin installed incorrectly. Rename plugin directory '__include' to 'include'.
lecture_24

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
lecture_24 [2015/04/23 11:42] rupertlecture_24 [2016/01/22 19:06] (current) rupert
Line 1: Line 1:
 +~~REVEAL~~
 ===== The distance from a point to a line ===== ===== The distance from a point to a line =====
  
Line 39: Line 40:
 so  so 
 \[ \dist(B,L)=\|\nn\|=\frac17\sqrt{12^2+17^2+13^2} = \frac17\sqrt{602} \approx 3.5051.\] \[ \dist(B,L)=\|\nn\|=\frac17\sqrt{12^2+17^2+13^2} = \frac17\sqrt{602} \approx 3.5051.\]
 +
 +===== The distance between skew lines in $\mathbb{R}^3$ =====
 +
 +Suppose that $L_1$ and $L_2$ are skew lines in $\rt$: lines which are not parallel and do not cross.
 +
 +Let $\vv_1$ be a direction vector along $L_1$, and let $\vv_2$ be a direction vector along $L_2$.
 +
 +{{ :sl1.png?nolink&600 |}}
 +
 +The shortest distance from $L_1$ and $L_2$ is measured along the direction orthogonal to both $\vv_1$ and $\vv_2$, namely the direction of $\nn=\vv_1\times\vv_2$.
 +
 +Let $\Pi$ be the plane with normal vector $\nn$ which contains $L_1$.
 +
 +{{ :sl2.png?nolink&600 |}}
 +
 +For any point $B$ in $L_2$, we have 
 +\[\dist(L_1,L_2)=\dist(B,\Pi) = \frac{|\vec{AB}\cdot \nn|}{\|\nn\|}\]
 +where $A$ is any point in $\Pi$; for example, we can take $A$ to be any point in $L_2$.
 +
 +
 +To summarise: for skew lines $L_1$ and $L_2$ with direction vectors $\vv_1$ and $\vv_2$, we have
 +\[ \dist(L_1,L_2)=\frac{|\vec{AB}\cdot \nn|}{\|\nn\|}\]
 +where $\nn=\vv_1\times\vv_2$ and $A$ and $B$ are points with one in $L_1$ and the other in $L_2$.
 +
 +=== Example ===
 +
 +Consider the skew lines
 +\[ L_1:\c xyz=\c 101+t_1\c123,\quad t_1\in\mathbb{R}\]
 +and 
 +\[ L_2:\c xyz=\c 321+t_2\c1{-1}1,\quad t_2\in\mathbb{R}.\]
 +The direction vectors are $\c123$ and $\c1{-1}1$, so we take $\nn$ to be their cross product:
 +\[ \nn=\c123\times\c1{-1}1=\begin{vmatrix}\vec\imath&\vec\jmath&\vec k\\1&2&3\\1&-1&1\end{vmatrix}=\c52{-3}\]
 +and if $A=(1,0,1)$ and $B=(3,2,1)$ then $A$ and $B$ are points with one in $L_1$ and the other in $L_2$, and $\vec{AB}=\c 220$. Hence
 +\[\dist(L_1,L_2)=\frac{|\vec{AB}\cdot \nn|}{\|\nn\|}=\frac{2(5)+2(2)+0(-3)}{\sqrt{5^2+2^2+3^2}} = \frac{14}{\sqrt{38}}.\]
lecture_24.1429789374.txt.gz · Last modified: by rupert

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki