User Tools

Site Tools


Plugin installed incorrectly. Rename plugin directory '_include' to 'include'.
Plugin installed incorrectly. Rename plugin directory '__include' to 'include'.
lecture_24

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Next revision
Previous revision
lecture_24 [2015/04/23 11:30] – created rupertlecture_24 [2016/01/22 19:06] (current) rupert
Line 1: Line 1:
 +~~REVEAL~~
 ===== The distance from a point to a line ===== ===== The distance from a point to a line =====
  
Line 13: Line 14:
 where $A$ is any point in $L$. where $A$ is any point in $L$.
  
-==== Example ====+=== Example ===
  
 To find the distance from the point $B=(1,2,3)$ to the line \[L:\def\c#1#2#3{\begin{bmatrix}#1\\#2\\#3\end{bmatrix}}\c xyz=\c10{-1}+t\c41{-5},\quad t\in\mathbb{R}\] To find the distance from the point $B=(1,2,3)$ to the line \[L:\def\c#1#2#3{\begin{bmatrix}#1\\#2\\#3\end{bmatrix}}\c xyz=\c10{-1}+t\c41{-5},\quad t\in\mathbb{R}\]
Line 19: Line 20:
 \[ \vec{AB}\times \vv = \begin{vmatrix}\vec\imath&\vec\jmath&\vec k\\0&2&4\\4&1&-5\end{vmatrix}=\c{-14}{16}{-8}=2\c{-7}{8}{-4}\] \[ \vec{AB}\times \vv = \begin{vmatrix}\vec\imath&\vec\jmath&\vec k\\0&2&4\\4&1&-5\end{vmatrix}=\c{-14}{16}{-8}=2\c{-7}{8}{-4}\]
 so so
-\[ \def\dist{\text{dist}}\dist(B,L)=\frac{\|\vec{AB}\times\vv\|}{\|\vv\|}=2\sqrt{7^2+8^2+4^2}{\sqrt{4^1+1^2+5^2}} = \frac{2\sqrt{129}}{\sqrt{42}} \approx 3.5051.\]+\[ \def\dist{\text{dist}}\dist(B,L)=\frac{\|\vec{AB}\times\vv\|}{\|\vv\|}=\frac{2\sqrt{7^2+8^2+4^2}}{\sqrt{4^2+1^2+5^2}} = \frac{2\sqrt{129}}{\sqrt{42}} \approx 3.5051.\] 
 + 
 +==== Alternative method ==== 
 + 
 +The method above relies on the cross product, so only works in $\rt$. The following alternative method works in $\rn$ for any $n$. 
 + 
 +{{ :dl2.jpg?nolink&600 |}} 
 + 
 +Observe that $\dist(B,L)$ is the length of the vector $\def\nn{\vec n}\nn=\vec{AB}-\def\pp{\vec p}\pp$ where $\pp=\def\proj{\text{proj}}\proj_{\vv}\vec{AB}$. 
 + 
 +=== Example === 
 + 
 +Let's redo the previous example using this method. 
 + 
 +We have $\vec{AB}=\c024$ and $\vv=\c41{-5}$, so  
 +\[\pp=\proj_{\vv}\vec{AB} = \left(\frac{\vec{AB}\cdot \vv}{\|\vv\|^2}\right)\vv = \frac{0(4)+2(1)+4(-5)}{4^2+1^2+5^2}\c41{-5} = -\frac{18}{42}\c41{-5}=-\frac{3}{7}\c41{-5},\] 
 +so  
 +\[ \nn=\vec{AB}-\pp=\c024-(-\frac37)\c41{-5}=\c024+\frac37\c41{-5}=\frac17\c{12}{17}{13}\] 
 +so  
 +\[ \dist(B,L)=\|\nn\|=\frac17\sqrt{12^2+17^2+13^2} = \frac17\sqrt{602} \approx 3.5051.\] 
 + 
 +===== The distance between skew lines in $\mathbb{R}^3$ ===== 
 + 
 +Suppose that $L_1$ and $L_2$ are skew lines in $\rt$: lines which are not parallel and do not cross. 
 + 
 +Let $\vv_1$ be a direction vector along $L_1$, and let $\vv_2$ be a direction vector along $L_2$. 
 + 
 +{{ :sl1.png?nolink&600 |}} 
 + 
 +The shortest distance from $L_1$ and $L_2$ is measured along the direction orthogonal to both $\vv_1$ and $\vv_2$, namely the direction of $\nn=\vv_1\times\vv_2$. 
 + 
 +Let $\Pi$ be the plane with normal vector $\nn$ which contains $L_1$. 
 + 
 +{{ :sl2.png?nolink&600 |}} 
 + 
 +For any point $B$ in $L_2$, we have  
 +\[\dist(L_1,L_2)=\dist(B,\Pi) = \frac{|\vec{AB}\cdot \nn|}{\|\nn\|}\] 
 +where $A$ is any point in $\Pi$; for example, we can take $A$ to be any point in $L_2$. 
 + 
 + 
 +To summarise: for skew lines $L_1$ and $L_2$ with direction vectors $\vv_1$ and $\vv_2$, we have 
 +\[ \dist(L_1,L_2)=\frac{|\vec{AB}\cdot \nn|}{\|\nn\|}\] 
 +where $\nn=\vv_1\times\vv_2$ and $A$ and $B$ are points with one in $L_1$ and the other in $L_2$. 
 + 
 +=== Example === 
 + 
 +Consider the skew lines 
 +\[ L_1:\c xyz=\c 101+t_1\c123,\quad t_1\in\mathbb{R}\] 
 +and  
 +\[ L_2:\c xyz=\c 321+t_2\c1{-1}1,\quad t_2\in\mathbb{R}.\] 
 +The direction vectors are $\c123$ and $\c1{-1}1$, so we take $\nn$ to be their cross product: 
 +\[ \nn=\c123\times\c1{-1}1=\begin{vmatrix}\vec\imath&\vec\jmath&\vec k\\1&2&3\\1&-1&1\end{vmatrix}=\c52{-3}\] 
 +and if $A=(1,0,1)$ and $B=(3,2,1)$ then $A$ and $B$ are points with one in $L_1$ and the other in $L_2$, and $\vec{AB}=\c 220$. Hence 
 +\[\dist(L_1,L_2)=\frac{|\vec{AB}\cdot \nn|}{\|\nn\|}=\frac{2(5)+2(2)+0(-3)}{\sqrt{5^2+2^2+3^2}} = \frac{14}{\sqrt{38}}.\]
lecture_24.1429788655.txt.gz · Last modified: by rupert

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki