User Tools

Site Tools


Plugin installed incorrectly. Rename plugin directory '_include' to 'include'.
Plugin installed incorrectly. Rename plugin directory '__include' to 'include'.
lecture_20_slides

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
lecture_20_slides [2016/04/13 15:35] – [Example 1] rupertlecture_20_slides [2016/04/13 15:43] (current) rupert
Line 159: Line 159:
   * $x-y+z=5$ has normal $\c1{-1}1$; this is in $\Pi$.    * $x-y+z=5$ has normal $\c1{-1}1$; this is in $\Pi$. 
   * $\vec{AB}=\def\c#1#2#3{\left[\begin{smallmatrix}#1\\#2\\#3\end{smallmatrix}\right]}\c3{-5}4$ is also a vector in $\Pi$   * $\vec{AB}=\def\c#1#2#3{\left[\begin{smallmatrix}#1\\#2\\#3\end{smallmatrix}\right]}\c3{-5}4$ is also a vector in $\Pi$
-  * So $\Pi$  has normal vector $\def\nn{\vec n}\nn=\c1{-1}1\times\c3{-5}4=\cp1{-1}13{-5}4=\c1{-1}{-2}$. +  * Normal for $\Pi$ $\def\nn{\vec n}\nn=\c1{-1}1\times\c3{-5}4=\cp1{-1}13{-5}4=\c1{-1}{-2}$. 
-  * Equation of $\Piis $x-y-2z=d$, and $A=(1,3,-3)in $\Pi$, so $d=1-3-2(-3)=4$ +  * Sub in $A$ (or $B$): get $x-y-2z=4$.
-  * Answer: $x-y-2z=4$.+
  
 ==== Example 2 ==== ==== Example 2 ====
Line 170: Line 169:
  
   * First find the line of intersection of $\Pi_1$ and $\Pi_2$   * First find the line of intersection of $\Pi_1$ and $\Pi_2$
-  * Solve \begin{gather}x-y+2z=1\\3x+2y-z=4.\end{gather}+  * Solve $x-y+2z=1$, $3x+2y-z=4$
   * $\left[\begin{smallmatrix}1&-1&2&1\\3&2&-1&4\end{smallmatrix}\right]\to_{EROs}\left[\begin{smallmatrix}1&0&3/5&6/5\\0&1&-7/5&1/5\end{smallmatrix}\right]$   * $\left[\begin{smallmatrix}1&-1&2&1\\3&2&-1&4\end{smallmatrix}\right]\to_{EROs}\left[\begin{smallmatrix}1&0&3/5&6/5\\0&1&-7/5&1/5\end{smallmatrix}\right]$
-  * Line $L$ of intersection is $\c xyz=\c{\tfrac65}{\tfrac15}0+t\c{-\tfrac35}{\tfrac75}1$, $t\in\mathbb{R}$. +  * Line $L$ of intersection is $\c xyz=\c{6/5}{1/5}0+t\c{-3/5}{7/5}1$, $t\in\mathbb{R}$.
-  * $\c{-\tfrac35}{\tfrac75}1$ is a direction vector along $L$ +
-  * Another one is $5\c{-\tfrac35}{\tfrac75}1=\c{-3}75$ +
-  * So $\c{-3}75$ is a vector in the plane $\Pi$.  +
-  * Take $t=2$ gives $(0,3,2)$ in $L$, so this is in $\Pi$. +
 ==== ==== ==== ====
- +  * $\Pi$ contains $L:\c xyz=\c{6/5}{1/5}0+t\c{-3/5}{7/5}1$, $t\in\mathbb{R}$, orthogonal to $\Pi_3: 2x+y+z=3$ 
-Since $\Pi$ is perpendicular to $\Pi_3$, which has normal vector $\nn_3=\c211$, the vector $\c211$ is in $\Pi$. +  * $5\c{-3/5}{7/5}1=\c{-3}75$ is a vector along $L$, so in $\Pi$ 
- +  * $\Pi_3$ has  normal vector $\nn_3=\c211$, which is in $\Pi$. 
-So a normal vector for $\Pi$ is +  * Normal vector for $\Pi$: $\nn=\c211\times\c{-3}75 = \cp211{-3}75=\c{-2}{-13}{17}
-\[ \nn=\c211\times\c{-3}75 = \cp211{-3}75=\c{-2}{-13}{17}\] +  * $\Pi$ has equation $-2x-13y+17z=d$ 
-hence $\Pi$ has equation $-2x-13y+17z=d$and subbing in the point $(0,3,2)$ gives $d=0-13(3)+17(2)=-39+34=-5$, so $\Pi$ has equation $-2x-13y+17z=-5$, or +==== ==== 
-\[ 2x+13y-17z=5.\]+  $\Pi$ has equation $-2x-13y+17z=d$ and contains $L:\c xyz=\c{6/5}{1/5}0+t\c{-3/5}{7/5}1$, $t\in\mathbb{R}$ 
 +  * Take $t=2$: $(0,3,2)$ in $L$, so in $\Pi$ 
 +  * Sub in: $d=0-13(3)+17(2)=-39+34=-5$ 
 +  * Answer: $-2x-13y+17z=-5$, or $2x+13y-17z=5$.
lecture_20_slides.1460561743.txt.gz · Last modified: by rupert

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki