User Tools

Site Tools


Plugin installed incorrectly. Rename plugin directory '_include' to 'include'.
Plugin installed incorrectly. Rename plugin directory '__include' to 'include'.
lecture_20_slides

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
lecture_20_slides [2016/04/13 15:19] rupertlecture_20_slides [2016/04/13 15:43] (current) rupert
Line 108: Line 108:
  
 ==== Example 3 ==== ==== Example 3 ====
 +
 +What's the equation of the plane parallel to  $\c111$ and $\c1{-1}1$ containing the point $(3,0,1)$?
 +  * A normal vector is $\nn=\c111\times\c1{-1}1=\def\cp#1#2#3#4#5#6{\left|\begin{smallmatrix}\vec\imath&\vec\jmath&\vec k\\#1&#2&#3\\#4&#5&#6\end{smallmatrix}\right|}\cp1111{-1}1=\c{2}0{-2}$
 +  * So the equation is $2x+0y-2z=2(3)-2(1)=4$, 
 +  * or $2x-2z=4$ 
 +  * or $x-z=2$.
 +
 +
 +==== Example 4 ====
  
 Find the equation of the plane $\Pi$ containing $A=(1,2,0)$, $B=(3,0,1)$ and $C=(4,3,-2)$. Find the equation of the plane $\Pi$ containing $A=(1,2,0)$, $B=(3,0,1)$ and $C=(4,3,-2)$.
Line 115: Line 124:
   * $\vec{AB}=\c2{-2}1$ and $\vec{AC}=\c31{-2}$ are both vectors in $\Pi$   * $\vec{AB}=\c2{-2}1$ and $\vec{AC}=\c31{-2}$ are both vectors in $\Pi$
   * Need $\nn$, orthogonal to both. Use cross product!   * Need $\nn$, orthogonal to both. Use cross product!
-  * $\nn=\vec{AB}\times\vec{AC}=\def\cp#1#2#3#4#5#6{\left|\begin{smallmatrix}\vec\imath&\vec\jmath&\vec k\\#1&#2&#3\\#4&#5&#6\end{smallmatrix}\right|}\cp2{-2}131{-2}=\c378$ +  * $\nn=\vec{AB}\times\vec{AC}=\cp2{-2}131{-2}=\c378$ 
-  * Equation is $3x+7y+8z=d$; find $d$ by subbing in a point in $\Pi$ +  * Equation is $3x+7y+8z=d$; find $d=17$ by subbing in $A=(1,2,0)$
-  * e.g. $A=(1,2,0)$ is in $\Pi$, so $d=3(1)+7(2)+8(0)=17$. +
   * Answer: $ 3x+7y+8z=17$.   * Answer: $ 3x+7y+8z=17$.
  
-==== Orthogonal planes and parallel planes ====+==== Parallel planes ====
  
 Let $\Pi_1$ be a plane with normal vector $\nn_1$, and let $\Pi_2$ be a plane with normal vector $\nn_2$. Let $\Pi_1$ be a plane with normal vector $\nn_1$, and let $\Pi_2$ be a plane with normal vector $\nn_2$.
  
-  $\Pi_1$ and $\Pi_2$ are //orthogonal// or //perpendicular// planes if they meet at right angles. The following conditions are equivalent:  +  $\Pi_1$ and $\Pi_2$ are //parallel// planes if $\nn_1$ and $\nn_2$ are are in the same direction 
-    - $\Pi_1$ and $\Pi_2$ are orthogonal planes; +    * If $\Pi_1$ has equation $ax+by+cz=d_1$ then any parallel plane $\Pi_2$  has an equation which may be written with the same left hand side: $ax+by+cz=d_2$. 
-    - $\nn_1\cdot\nn_2=0$; +    * i.e., we can assume that $\nn_1=\nn_2=\c abc$.
-    - $\nn_1$ is a vector in $\Pi_2$;  +
-    - $\nn_2$ is a vector in $\Pi_1$. +
-  - $\Pi_1$ and $\Pi_2$ are //parallel// planes if they have the same normal vectors. In other words, if $\Pi_1$ has equation $ax+by+cz=d_1$ then any parallel plane $\Pi_2$ has an equation with the same left hand side: $ax+by+cz=d_2$.+
  
-=== Examples ===+==== Example ====
  
-1. Find the equation of the plane $\Pi$ passing through $A=(1,3,-3)$ and $B=(4,-2,1)$ which is orthogonal to the plane $x-y+z=5$.+The plane parallel to $2x-4y+5z=8$ passing through $(1,2,3)$ is 
 +  * $2x-4y+5z=2(1)-4(2)+5(3) = 10$ 
 +  * i.e., $2x-4y+5z=10$.
  
-Solution: The plane $x-y+z=5$ has normal vector $\c1{-1}1$, so this is a vector in $\Pi$. Moreover, $\vec{AB}=\c3{-5}4$ is also a vector in $\Pi$, so it has normal vector 
-\[ \nn=\c1{-1}1\times\c3{-5}4=\cp1{-1}13{-5}4=\c1{-1}{-2}.\] 
-So the equation of $\Pi$ is $x-y-2z=d$ and subbing in $A=(1,3,-3)$ gives $d=1-3-2(-3)=4$, so the equation of $\Pi$ is \[ x-y-2z=4.\] 
  
-2. The plane parallel to $2x-4y+5z=8$ passing through $(1,2,3)$ is $2x-4y+5z=2(1)-4(2)+5(3) 10$, or $2x-4y+5z=10$.+==== Orthogonal planes ====
  
-3. Find the equation of the plane parallel to the vectors $\c111$ and $\c1{-1}1containing the point $(3,0,1)$.+Let~$\Pi_1$ be a plane with normal vector $\nn_1$ and let $\Pi_2be a plane with normal vector $\nn_2$.
  
-Solution: a normal vector is $\nn=\c111\times\c1{-1}1=\cp1111{-1}1=\c{2}0{-2}$, so the equation is $2x+0y-2z=2(3)-2(1)=4$, or $2x-2z=4$, or $x-z=2$.+$\Pi_1$ and $\Pi_2$ are //orthogonal// or //perpendicular// planes if they meet at right angles. The following conditions are equivalent:  
 +  - $\Pi_1$ and $\Pi_2$ are orthogonal planes; 
 +  $\nn_1\cdot\nn_2=0$; 
 +  - $\nn_1$ is a vector in $\Pi_2$;  
 +  - $\nn_2is a vector in $\Pi_1$.
  
-4. Find the equation of the plane $\Pi$ which contains the line of intersection of the planes +==== Example 1 ====
-\[ \Pi_1: x-y+2z=1\quad\text{and}\quad \Pi_2: 3x+2y-z=4,\] +
-and is perpendicular to the plane $\Pi_3:2x+y+z=3$.+
  
-Solution: To find the line of intersection of $\Pi_1and $\Pi_2$, we must solve the system of linear equations \begin{gather}x-y+2z=1\\3x+2y-z=4.\end{gather} +Find the equation of the plane $\Pipassing through $A=(1,3,-3)and $B=(4,-2,1)which is orthogonal to the plane $x-y+z=5$.
-We can solve this linear system in the usual wayby applying EROs to the matrix $\begin{bmatrix}1&-1&2&1\\3&2&-1&4\end{bmatrix}$: +
-\begin{align*}  +
-\def\go#1#2{\begin{bmatrix}#1\\#2\end{bmatrix}} +
-\def\ar#1{\\[6pt]\xrightarrow{#1}&+
-&\go{1&-1&2&1}{3&2&-1&4} +
-\ar{R2\to R2-3R1} +
-\go{1&-1&2&1}{0&5&-7&1} +
-\ar{R1\to 5R1+R2} +
-\go{5&0&3&6}{0&5&-7&1} +
-\ar{R1\to\tfrac15R1,\,R2\to\tfrac15R2} +
-\go{1&0&3/5&6/5}{0&1&-7/5&1/5} +
-\end{align*} +
-So the line $Lof intersection is given by  +
-\[ L: \c xyz=\c{\tfrac65}{\tfrac15}0+t\c{-\tfrac35}{\tfrac75}1,\quad t\in\mathbb{R}.\] +
-So $\c{-\tfrac35}{\tfrac75}1$ is a direction vector along $L$and also $5\c{-\tfrac35}{\tfrac75}1=\c{-3}75$ is a vector along $L$. So $\c{-3}75$ is a vector in the plane $\Pi$. Moreover, taking $t=2$ gives the point $(0,3,2)$ in the line $L$, so this is a point in $\Pi$.+
  
-Since $\Pi$ is perpendicular to $\Pi_3$, which has normal vector $\nn_3=\c211$, the vector $\c211is in $\Pi$.+  * $x-y+z=5$ has normal $\c1{-1}1$; this is in $\Pi$.  
 +  * $\vec{AB}=\def\c#1#2#3{\left[\begin{smallmatrix}#1\\#2\\#3\end{smallmatrix}\right]}\c3{-5}4is also a vector in $\Pi$ 
 +  * Normal for $\Pi$:  $\def\nn{\vec n}\nn=\c1{-1}1\times\c3{-5}4=\cp1{-1}13{-5}4=\c1{-1}{-2}$. 
 +  * Sub in $A$ (or $B$): get $x-y-2z=4$. 
 + 
 +==== Example 2 ==== 
 + 
 +Find the equation of the plane $\Pi$ which contains the line of intersection of the planes 
 +\[ \Pi_1: x-y+2z=1\quad\text{and}\quad \Pi_2: 3x+2y-z=4,\] 
 +and is perpendicular to the plane $\Pi_3:2x+y+z=3$.
  
-So normal vector for $\Pi$ is +  * First find the line of intersection of $\Pi_1$ and $\Pi_2$ 
-\\nn=\c211\times\c{-3}75 = \cp211{-3}75=\c{-2}{-13}{17}\] +  * Solve $x-y+2z=1$, $3x+2y-z=4$ 
-hence $\Pi$ has equation $-2x-13y+17z=d$and subbing in the point $(0,3,2)$ gives $d=0-13(3)+17(2)=-39+34=-5$, so $\Pi$ has equation $-2x-13y+17z=-5$, or +  * $\left[\begin{smallmatrix}1&-1&2&1\\3&2&-1&4\end{smallmatrix}\right]\to_{EROs}\left[\begin{smallmatrix}1&0&3/5&6/5\\0&1&-7/5&1/5\end{smallmatrix}\right]$ 
-\[ 2x+13y-17z=5.\]+  * Line $L$ of intersection is $\c xyz=\c{6/5}{1/5}0+t\c{-3/5}{7/5}1$, $t\in\mathbb{R}$. 
 +==== ==== 
 +  * $\Pi$ contains $L:\c xyz=\c{6/5}{1/5}0+t\c{-3/5}{7/5}1$, $t\in\mathbb{R}$, orthogonal to $\Pi_3: 2x+y+z=3$ 
 +  * $5\c{-3/5}{7/5}1=\c{-3}75$ is a vector along $L$, so in $\Pi$ 
 +  * $\Pi_3$ has  normal vector $\nn_3=\c211$, which is in $\Pi$. 
 +  * Normal vector for $\Pi$: $\nn=\c211\times\c{-3}75 = \cp211{-3}75=\c{-2}{-13}{17}
 +  * $\Pi$ has equation $-2x-13y+17z=d$ 
 +==== ==== 
 +  $\Pi$ has equation $-2x-13y+17z=d$ and contains $L:\c xyz=\c{6/5}{1/5}0+t\c{-3/5}{7/5}1$, $t\in\mathbb{R}$ 
 +  * Take $t=2$: $(0,3,2)$ in $L$, so in $\Pi$ 
 +  * Sub in: $d=0-13(3)+17(2)=-39+34=-5$ 
 +  * Answer: $-2x-13y+17z=-5$, or $2x+13y-17z=5$.
lecture_20_slides.1460560741.txt.gz · Last modified: by rupert

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki