User Tools

Site Tools


Plugin installed incorrectly. Rename plugin directory '_include' to 'include'.
Plugin installed incorrectly. Rename plugin directory '__include' to 'include'.
lecture_19_slides

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
lecture_19_slides [2017/04/10 15:50] – [The cross product] rupertlecture_19_slides [2017/04/11 09:56] (current) – [Corollary: the length of $\vec v\times\vec w$] rupert
Line 97: Line 97:
   * Calculations/properties of the determinant.   * Calculations/properties of the determinant.
  
-==== Theorem ====+==== Theorem: cross and dot product formula ====
 For any vectors $\vv$ and $\ww$ in $\mathbb{R}^3$, we have For any vectors $\vv$ and $\ww$ in $\mathbb{R}^3$, we have
 \[ \|\vv\times\ww\|^2+(\vv\cdot\ww)^2=\|\vv\|^2\,\|\ww\|^2.\] \[ \|\vv\times\ww\|^2+(\vv\cdot\ww)^2=\|\vv\|^2\,\|\ww\|^2.\]
Line 107: Line 107:
 For any vectors $\vv$ and $\ww$ in $\mathbb{R}^3$, we have For any vectors $\vv$ and $\ww$ in $\mathbb{R}^3$, we have
 \[ \|\vv\times\ww\|=\|\vv\|\,\|\ww\|\,\sin\theta\] \[ \|\vv\times\ww\|=\|\vv\|\,\|\ww\|\,\sin\theta\]
-where $\theta$ is the angle between $\vv$ and $\ww$ (with $0\le\theta<\pi$).+where $\theta$ is the angle between $\vv$ and $\ww$ (with $0\le\theta\le\pi$).
  
 === Proof === === Proof ===
-  * We know that $\vv\cdot\ww=\|\vv\|\,\|\ww\|\cos\theta$.+  * Geometric dot product formula: $\vv\cdot\ww=\|\vv\|\,\|\ww\|\cos\theta$ 
 +  * $\times$ & $\cdot$ formula: $\|\vv\times\ww\|^2+(v\cdot w)^2=\|\vv\|^2\,\|\ww\|^2$
   * So $\|\vv\times\ww\|^2=\|\vv\|^2\,\|\ww\|^2-(\vv\cdot\ww)^2$   * So $\|\vv\times\ww\|^2=\|\vv\|^2\,\|\ww\|^2-(\vv\cdot\ww)^2$
     * $=\|\vv\|^2\,\|\ww\|^2-\|\vv\|^2\|\ww\|^2\cos^2\theta$     * $=\|\vv\|^2\,\|\ww\|^2-\|\vv\|^2\|\ww\|^2\cos^2\theta$
     * $=\|\vv\|^2\,\|\ww\|^2(1-\cos^2\theta)$     * $=\|\vv\|^2\,\|\ww\|^2(1-\cos^2\theta)$
     * $=\|\vv\|^2\,\|\ww\|^2\sin^2\theta$.     * $=\|\vv\|^2\,\|\ww\|^2\sin^2\theta$.
-  * $\sin\theta\ge0$ for $0\le\theta<\pi$, so taking square roots of both sides gives $ \|\vv\times\ww\|=\|\vv\|\,\|\ww\|\,\sin\theta$. ■ +  * $\sin\theta\ge0$ for $0\le\theta\le\pi$, so taking square roots of both sides gives $ \|\vv\times\ww\|=\|\vv\|\,\|\ww\|\,\sin\theta$. ■ 
  
 ===== Geometry of the cross product ===== ===== Geometry of the cross product =====
lecture_19_slides.1491839408.txt.gz · Last modified: by rupert

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki