Plugin installed incorrectly. Rename plugin directory '_include' to 'include'.
Plugin installed incorrectly. Rename plugin directory '__include' to 'include'.
lecture_19_slides
Differences
This shows you the differences between two versions of the page.
| Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
| lecture_19_slides [2016/04/11 15:15] – [Example] rupert | lecture_19_slides [2017/04/11 09:56] (current) – [Corollary: the length of $\vec v\times\vec w$] rupert | ||
|---|---|---|---|
| Line 5: | Line 5: | ||
| * Dot product: $\vec v\cdot\vec w=v_1w_1+v_2w_2+\dots + v_nw_n$ | * Dot product: $\vec v\cdot\vec w=v_1w_1+v_2w_2+\dots + v_nw_n$ | ||
| * Geometric formula: $\vec v\cdot \vec w = \|\vec v\|\,\|\vec w\|\, | * Geometric formula: $\vec v\cdot \vec w = \|\vec v\|\,\|\vec w\|\, | ||
| + | * $\|\vec v\|=$length of $\vec v$ $=\sqrt{v_1^2+\dots+v_n^2}$ | ||
| + | * $\|\vec w\|=$length of $\vec w$ $=\sqrt{w_1^2+\dots+w_n^2}$ | ||
| + | * $\theta=$angle between $\vec v$ and $\vec w$ | ||
| * $\vec v$ and $\vec w$ are orthogonal (at right-angles) if $\vec v\cdot \vec w=0$ | * $\vec v$ and $\vec w$ are orthogonal (at right-angles) if $\vec v\cdot \vec w=0$ | ||
| - | * Orthogonal projection | + | |
| - | * $\vec p$ is also called the component of $\vec v$ along $\vec w$ | + | ===== Orthogonal projection |
| - | * $\vec n=\vec v-\vec p$ is call the component of $\vec v$ orthogonal to $\vec w$ | + | |
| + | Let $\def\pp{\vec p}\def\ww{\vec w}\def\vv{\vec v}\def\nn{\vec n}\ww$ non-zero, and $\vv$ any vector. | ||
| + | |||
| + | $\pp$ is the **orthogonal projection of $\vv$ onto $\ww$** if: | ||
| + | |||
| + | - $\pp$ is in the same direction as $\ww$; and | ||
| + | - the vector $\nn=\vv-\pp$ is orthogonal to $\ww$. | ||
| + | |||
| + | * {{ : | ||
| + | |||
| + | * We write $\pp=\def\ppp{\text{proj}_{\ww}\vv}\ppp$. | ||
| + | * $\nn=\vv-\pp$ is called | ||
| + | |||
| + | |||
| + | ==== Formula for $\pp=\ppp$ ==== | ||
| + | |||
| + | * $\nn=\vv-\pp$ is orthogonal to $\ww$, so $\nn\cdot \ww=0$. | ||
| + | * so $(\vv-\pp)\cdot \ww=0$ | ||
| + | * so $\vv\cdot\ww-\pp\cdot\ww=0$ | ||
| + | * so $\pp\cdot\ww=\vv\cdot\ww$ | ||
| + | * $\pp$ in same direction as $\ww$, so $\color{blue}{\pp=c\ww}$ for some scalar $c$ | ||
| + | * so $c\ww\cdot \ww=\vv\cdot\ww$ | ||
| + | * so $c\|\ww\|^2=\vv\cdot\ww$ | ||
| + | * so $c=\frac{\vv\cdot\ww}{\|\ww\|^2}$. | ||
| + | * So $\color{blue}{\pp=\ppp=\frac{\vv\cdot\ww}{\|\ww\|^2}\ww}.$ | ||
| ==== Example ==== | ==== Example ==== | ||
| - | $\def\vv{\vec v}\def\pp{\vec p}\def\ppp{\text{proj}_{\ww}\vv}\def\ww{\vec w}\def\nn{\vec n}\vv=\def\c# | + | $\vv=\def\c# |
| * $\ppp=\frac{\vv\cdot\ww}{\|\ww\|^2}\ww$ | * $\ppp=\frac{\vv\cdot\ww}{\|\ww\|^2}\ww$ | ||
| * $=\frac{2-2-4}{2^2+(-1)^2+4^2}\c2{-1}4$ | * $=\frac{2-2-4}{2^2+(-1)^2+4^2}\c2{-1}4$ | ||
| * $=-\frac4{21}\c2{-1}4$ | * $=-\frac4{21}\c2{-1}4$ | ||
| * component of $\vv$ orthogonal to $\ww$ is $\nn=\vv-\ppp$ | * component of $\vv$ orthogonal to $\ww$ is $\nn=\vv-\ppp$ | ||
| - | * $\nn=\c12{-1}-\left(-\frac4{21}\right)\c2{-1}4=\c{29/21}{38/21}{-5/21}$. | + | * $\nn=\c12{-1}-\left(-\frac4{21}\right)\c2{-1}4=\frac1{21}\c{29}{38}{-5}$. |
| + | |||
| + | |||
| ===== The cross product of vectors in $\mathbb{R}^3$ ===== | ===== The cross product of vectors in $\mathbb{R}^3$ ===== | ||
| Line 34: | Line 64: | ||
| * Let $\def\vc# | * Let $\def\vc# | ||
| * $\vv\times\ww$ is another vector in $\mathbb{R}^3$, | * $\vv\times\ww$ is another vector in $\mathbb{R}^3$, | ||
| - | * ... defined as the determinant $\vv\times\ww=\def\cp# | + | * ... defined as the determinant $\color{blue}{\vv\times\ww=\def\cp# |
| * Interpret this by Laplace expansion along row 1:\[\cpc vw=\def\vm# | * Interpret this by Laplace expansion along row 1:\[\cpc vw=\def\vm# | ||
| + | |||
| ==== Example ==== | ==== Example ==== | ||
| Line 66: | Line 97: | ||
| * Calculations/ | * Calculations/ | ||
| - | ==== Theorem ==== | + | ==== Theorem: cross and dot product formula |
| For any vectors $\vv$ and $\ww$ in $\mathbb{R}^3$, | For any vectors $\vv$ and $\ww$ in $\mathbb{R}^3$, | ||
| \[ \|\vv\times\ww\|^2+(\vv\cdot\ww)^2=\|\vv\|^2\, | \[ \|\vv\times\ww\|^2+(\vv\cdot\ww)^2=\|\vv\|^2\, | ||
| Line 76: | Line 107: | ||
| For any vectors $\vv$ and $\ww$ in $\mathbb{R}^3$, | For any vectors $\vv$ and $\ww$ in $\mathbb{R}^3$, | ||
| \[ \|\vv\times\ww\|=\|\vv\|\, | \[ \|\vv\times\ww\|=\|\vv\|\, | ||
| - | where $\theta$ is the angle between $\vv$ and $\ww$ (with $0\le\theta<\pi$). | + | where $\theta$ is the angle between $\vv$ and $\ww$ (with $0\le\theta\le\pi$). |
| === Proof === | === Proof === | ||
| - | * We know that $\vv\cdot\ww=\|\vv\|\, | + | * Geometric dot product formula: |
| + | * $\times$ & $\cdot$ formula: $\|\vv\times\ww\|^2+(v\cdot w)^2=\|\vv\|^2\, | ||
| * So $\|\vv\times\ww\|^2=\|\vv\|^2\, | * So $\|\vv\times\ww\|^2=\|\vv\|^2\, | ||
| * $=\|\vv\|^2\, | * $=\|\vv\|^2\, | ||
| * $=\|\vv\|^2\, | * $=\|\vv\|^2\, | ||
| * $=\|\vv\|^2\, | * $=\|\vv\|^2\, | ||
| - | * $\sin\theta\ge0$ for $0\le\theta<\pi$, so taking square roots of both sides gives $ \|\vv\times\ww\|=\|\vv\|\, | + | * $\sin\theta\ge0$ for $0\le\theta\le\pi$, so taking square roots of both sides gives $ \|\vv\times\ww\|=\|\vv\|\, |
| ===== Geometry of the cross product ===== | ===== Geometry of the cross product ===== | ||
| Line 135: | Line 167: | ||
| ==== Example ==== | ==== Example ==== | ||
| - | Find volume of the parallelepiped with vertices | + | Find volume of the parallelepiped with vertices |
| === Solution === | === Solution === | ||
| * $\vec{AB}=\c102$, | * $\vec{AB}=\c102$, | ||
| - | * Volume is $ V=\left|\det\left[ \begin{smallmatrix}1& | + | * Volume is $ V=\left|\det\left[ \begin{smallmatrix}1& |
| + | * $ = |-13| = 13.$ | ||
lecture_19_slides.1460387732.txt.gz · Last modified: by rupert
