User Tools

Site Tools


Plugin installed incorrectly. Rename plugin directory '_include' to 'include'.
Plugin installed incorrectly. Rename plugin directory '__include' to 'include'.
lecture_18_slides

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
lecture_18_slides [2017/04/05 15:37] – [Corollary 2: orthogonal vectors] rupertlecture_18_slides [2017/04/10 16:30] (current) – [Proof of the geometric dot product formula] rupert
Line 75: Line 75:
   * Consider a triangle with two sides $\vv$ and $\ww$. By the triangle rule for vector addition, the third side is $\vv-\ww$:{{ :t2.png?nolink&400|}}   * Consider a triangle with two sides $\vv$ and $\ww$. By the triangle rule for vector addition, the third side is $\vv-\ww$:{{ :t2.png?nolink&400|}}
   * Use the cosine rule with $A=\theta$, $a=\|\vv-\ww\|$, $b=\|\vv\|$, $c=\|\ww\|$    * Use the cosine rule with $A=\theta$, $a=\|\vv-\ww\|$, $b=\|\vv\|$, $c=\|\ww\|$ 
-  * $ \|\vv-\ww\|^2=\|\vv\|\,\|\ww\|-2\|\vv\|\,\|\ww\|\,\cos\theta$+  * $ \|\vv-\ww\|^2=\|\vv\|^2+\|\ww\|^2-2\|\vv\|\,\|\ww\|\,\cos\theta$
  
 ==== Proof of the geometric dot product formula, continued==== ==== Proof of the geometric dot product formula, continued====
Line 120: Line 120:
   * Observe that $\ww=\c{-2}1$ has $\vv\cdot\ww=0$   * Observe that $\ww=\c{-2}1$ has $\vv\cdot\ww=0$
   * So $\vv$ and $\ww$ are orthogonal   * So $\vv$ and $\ww$ are orthogonal
-  * $\vec u=\frac1{\|\ww\|}\ww$ is a unit vector in the same direction as $\ww$, (so is also orthogonal to $\vv$)+  * $\vec u=\frac1{\|\ww\|}\ww$ is a unit vector in the same direction as $\ww$ 
 +    * so it is also orthogonal to $\vv$.
   * So $\vec u=\frac1{\sqrt5}\c{-2}1=\c{-2/\sqrt5}{1/\sqrt5}$ is a unit vector orthogonal to $\vv=\c12$.   * So $\vec u=\frac1{\sqrt5}\c{-2}1=\c{-2/\sqrt5}{1/\sqrt5}$ is a unit vector orthogonal to $\vv=\c12$.
  
-===== Orthogonal projection ===== 
  
-Let $\def\pp{\vec p}\def\ww{\vec w}\def\vv{\vec v}\def\nn{\vec n}\ww$ non-zero, and $\vv$ any vector.  
- 
-$\pp$ is the **orthogonal projection of $\vv$ onto $\ww$** if: 
- 
-  - $\pp$ is in the same direction as $\ww$; and 
-  - the vector $\nn=\vv-\pp$ is orthogonal to $\ww$. 
- 
-  * {{ :t3.png?nolink&400 |}} 
- 
-  * We write $\pp=\def\ppp{\text{proj}_{\ww}\vv}\ppp$. 
-  * $\nn=\vv-\pp$ is **the component of $\vv$ orthogonal to $\ww$**. 
- 
- 
-==== Formula for $\pp=\ppp$ ==== 
- 
-  * $\pp$ same direction as $\ww$, so $\pp=c\ww$, some scalar $c$ 
-  * $\nn=\vv-\pp$ is orthogonal to $\ww$, so $\nn\cdot \ww=0$. 
-    * so $(\vv-\pp)\cdot \ww=0$ 
-    * so $\vv\cdot\ww-\pp\cdot\ww=0$ 
-    * so $\pp\cdot\ww=\vv\cdot\ww$ 
-    * so $c\ww\cdot \ww=\vv\cdot\ww$ 
-    * so $c\|\ww\|^2=\vv\cdot\ww$ 
-    * so $c=\frac{\vv\cdot\ww}{\|\ww\|^2}$. 
-  * So $\color{blue}{\pp=\ppp=\frac{\vv\cdot\ww}{\|\ww\|^2}\ww}.$ 
- 
- 
-==== Example ==== 
- 
-$\vv=\def\c#1#2#3{\left[\begin{smallmatrix}#1\\#2\\#3\end{smallmatrix}\right]}\c12{-1}$ and $\ww=\c2{-1}4$ 
-  * $\ppp=\frac{\vv\cdot\ww}{\|\ww\|^2}\ww$ 
-    * $=\frac{2-2-4}{2^2+(-1)^2+4^2}\c2{-1}4$ 
-    * $=-\frac4{21}\c2{-1}4$ 
-  * component of $\vv$ orthogonal to $\ww$ is $\nn=\vv-\ppp$ 
-    * $\nn=\c12{-1}-\left(-\frac4{21}\right)\c2{-1}4=\frac1{21}\c{29}{38}{-5}$. 
lecture_18_slides.1491406622.txt.gz · Last modified: by rupert

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki