User Tools

Site Tools


Plugin installed incorrectly. Rename plugin directory '_include' to 'include'.
Plugin installed incorrectly. Rename plugin directory '__include' to 'include'.
lecture_17_slides

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
lecture_17_slides [2016/04/04 16:17] – [Proof of the Theorem] rupertlecture_17_slides [2017/04/03 15:34] (current) – [Corollary] rupert
Line 1: Line 1:
 ~~REVEAL~~ ~~REVEAL~~
  
-==== Last time ==== 
  
-  * a vector $\vec v$ moves $\vec xto $\vec x+\vec v$ +====== Chapter 3: Vectors and geometry ====== 
-  * e.gif $\def\mat#1{\left[\begin{smallmatrix}#1\end{smallmatrix}\right]}\def\vv#1#2{\mat{#1\\#2}}A=(-1,3)$$B=(5,-4)$, which vector moves $A$ to $B$? + 
-  * Answer: $\vec{AB}=\vv 6{-7}$+==== Vectors ==== 
-  * Reason: $A+\vec {AB}=B$, so $\vec{AB}=B-A=\vv 5{-4}-\vv{-1}3=\vv6{-7}$.+ 
 +  $\def\m#1{\begin{bmatrix}#1\end{bmatrix}}\m{4\\3}$ is $2\times 1$ column vector 
 +  * i.e., a pair of numbers written in a column 
 +  * We also use pairs of numbers to write points in the plane $\mathbb R^2$ 
 +  * e.g., $(4,3)$ is a point 
 +    * you get there by starting from the origin, moving $4$ units to the right and $3$ units up. 
 +  * We think $\vec v=\m{4\\3}as an instruction to move $4$ units to the right and $3$ units up.  
 +  * This movement is called "translation by $\vec v$".  
 + 
 +==== Translation by $\vec v$ ==== 
 + 
 +The vector $\vec v=\m{4\\3}moves: 
 + 
 +  * $(0,0)$ to $(4,3)$ 
 +  * $(-2,6)$ to $(2,9)$ 
 +  * $(x,y)$ to $(x+4,y+3)$. 
 + 
 +  * We're not too fussy about the difference between points like $(4,3)$ and vectors like $\m{4\\3}$. 
 +  * If we write points as column vectors, we can perform algebra (addition, subtraction, scalar multiplication) using points and column vectors. 
 + 
 +==== ==== 
 + 
 +For example, we could rewrite the examples above by saying that $\vec v=\m{4\\3}$ moves: 
 + 
 +  * $\m{0\\0}$ to $\m{0\\0}+\m{4\\3}=\m{4\\3}$ 
 +  * $\m{-2\\6}$ to $\m{-2\\6}+\m{4\\3}=\m{2\\9}
 +  * $\m{x\\y}$ to $\m{x\\y}+\m{4\\3}=\m{x+4\\y+3}$. 
 + 
 +  * More generally: a column vector $\vec v$ moves a point $\vec x$ to $\vec x+\vec v$. 
 + 
 +==== Example ==== 
 + 
 +Which vector $\vec v$ moves the point $A=(-1,3)$ to $B=(5,-4)$? 
 + 
 +  * We need a vector $\vec vwith $A+\vec v=B$ 
 +  * So $\vec v=B-A = \m{5\\-4}-\m{-1\\3}=\m{6\\-7}$.  
 + 
 +  * We write $\vec{AB}=\m{6\\-7}$, since this is the vector which moves $A$ to $B$.
  
 ==== Definition of $\vec{AB}$ ==== ==== Definition of $\vec{AB}$ ====
Line 21: Line 57:
   * if $A=(3,-4,5)$    * if $A=(3,-4,5)$ 
   * and $B=(11,6,-2)$    * and $B=(11,6,-2)$ 
-  * then $\vec{AB}=\def\m#1{\mat{#1}}\m{11\\6\\-2}-\m{3\\-4\\5}=\m{8\\10\\-7}$.+  * then $\vec{AB}=\def\mat#1{\left[\begin{smallmatrix}#1\end{smallmatrix}\right]}\def\m#1{\mat{#1}}\m{11\\6\\-2}-\m{3\\-4\\5}=\m{8\\10\\-7}$.
  
 ==== The uses of vectors ==== ==== The uses of vectors ====
Line 50: Line 86:
 That is, multiplying a vector by a scalar $c$ scales its length by $|c|$, the absolute value of $c$. That is, multiplying a vector by a scalar $c$ scales its length by $|c|$, the absolute value of $c$.
  
-  * Hints: $\sqrt{xy}=\sqrt{x}\sqrt{y}$, and $\sqrt{c^2}=|c|$.+  * Hints: $\sqrt{xy}=\sqrt{x}\sqrt{y}$ whenever $x,y\ge0$, and $\sqrt{c^2}=|c|$ for any $c\in \mathbb R$.
  
 ==== Distance between two points ==== ==== Distance between two points ====
Line 145: Line 181:
 ==== Example ==== ==== Example ====
  
-  * Let $\vec v=\m{1\\2}$ and $\vec w=\m{-2\\1}$ +What's the angle between $\vec v=\m{1\\2}$ and $\vec w=\m{-2\\1}$? 
-  * Then $\dp vw=1(-2)+2(1)=-2+2=0$. +  * $\dp vw=1(-2)+2(1)=-2+2=0$. 
-  * On the other hand, $\|\vec v\|=\sqrt5=\|\vec w\|$+  * $\|\vec v\|=\sqrt5=\|\vec w\|$
   * So the angle $\theta$ between $\vec v$ and $\vec w$ has $ 0=\dp vw=\sqrt 5\times \sqrt 5 \times \cos\theta$   * So the angle $\theta$ between $\vec v$ and $\vec w$ has $ 0=\dp vw=\sqrt 5\times \sqrt 5 \times \cos\theta$
   * So $5\cos\theta=0$, so $\cos\theta=0$,   * So $5\cos\theta=0$, so $\cos\theta=0$,
Line 183: Line 219:
   * $ \|\vv-\ww\|^2=\|\vv\|\,\|\ww\|-2\vv\cdot\ww\cos\theta.$   * $ \|\vv-\ww\|^2=\|\vv\|\,\|\ww\|-2\vv\cdot\ww\cos\theta.$
   * We know that $\|\vec x\|^2=\vec x\cdot\vec x$   * We know that $\|\vec x\|^2=\vec x\cdot\vec x$
-  * So $\|\vv-\ww\|^2=(\vv-\ww)\cdot(\vv-\ww)=\vv\cdot\vv+\ww\cdot\ww-\ww\cdot\vv-\vv\cdot\ww$ +  * So $\|\vv-\ww\|^2=(\vv-\ww)\cdot(\vv-\ww)
-  * $=\|\vv\|^2+\|\ww\|^2-2\vv\cdot\ww$.+    * $=\vv\cdot\vv+\ww\cdot\ww-\ww\cdot\vv-\vv\cdot\ww$ 
 +    * $=\|\vv\|^2+\|\ww\|^2-2\vv\cdot\ww$.
   * So $\|\vv\|\,\|\ww\|-2\vv\cdot\ww\cos\theta=\|\vv\|^2+\|\ww\|^2-2\vv\cdot\ww$   * So $\|\vv\|\,\|\ww\|-2\vv\cdot\ww\cos\theta=\|\vv\|^2+\|\ww\|^2-2\vv\cdot\ww$
   * So $\vv\cdot\ww=\|\vv\|\,\|\ww\|\cos\theta$. ■    * So $\vv\cdot\ww=\|\vv\|\,\|\ww\|\cos\theta$. ■ 
  
-==== Corollary ====+==== Corollary ====
  
 If $\vv$ and $\ww$ are non-zero vectors and $\theta$ is the angle between them, then $\cos\theta=\displaystyle\frac{\vv\cdot\ww}{\|\vv\|\,\|\ww\|}$. If $\vv$ and $\ww$ are non-zero vectors and $\theta$ is the angle between them, then $\cos\theta=\displaystyle\frac{\vv\cdot\ww}{\|\vv\|\,\|\ww\|}$.
  
-==== Corollary ====+==== Corollary ====
 If $\vv$ and $\ww$ are non-zero vectors with $\vv\cdot\ww=0$, then $\vv$ and $\ww$ are **orthogonal**: they are at right-angles. If $\vv$ and $\ww$ are non-zero vectors with $\vv\cdot\ww=0$, then $\vv$ and $\ww$ are **orthogonal**: they are at right-angles.
  
-==== Examples ====+==== Example 1 ==== 
 + 
 +What is the angle $\theta$ between $\def\c#1#2{\left[\begin{smallmatrix}{#1}\\{#2}\end{smallmatrix}\right]}\c12$ and $\c3{-4}$? 
 +  * $ \cos\theta=\frac{\c12\cdot\c3{-4}}{\left\|\c12\right\|\,\left\|\c3{-4}\right\|} =\frac{3-8}{\sqrt5\sqrt{25}}=-\frac1{\sqrt5}$ 
 +  * So $\theta=\cos^{-1}(-1/\sqrt5) \approx 2.03\,\text{radians}\approx 116.57^\circ$. 
 + 
 +==== Example 2 ==== 
 +Prove that $A=(2,3)$, $B=(3,6)$ and $C=(-4,5)$ are the vertices of a right-angled triangle. 
 +  * $\vec{AB}=\c36-\c23=\c13$  
 +  * $\vec{AC}=\c{-4}5-\c23=\c{-6}2$ 
 +  * So $\vec{AB}\cdot\vec{AC}=\c13\cdot\c{-6}2=1(-6)+3(2)=0$ 
 +  * So the sides $AB$ and $AC$ are at right-angles. 
 +  * So $ABC$ is a right-angled triangle. 
 + 
 +==== Example 3 ====
  
-  - The angle $\theta$ between $\def\c#1#2{\begin{bmatrix}#1\\#2\end{bmatrix}}\c12$ and $\c3{-4}$ has \[ \cos\theta=\frac{\c12\cdot\c3{-4}}{\left\|\c12\right\|\,\left\|\c3{-4}\right\|} =\frac{3-8}{\sqrt5\sqrt{25}}=-\frac1{\sqrt5},\] so $\theta=\cos^{-1}(-1/\sqrt5) \approx 2.03\,\text{radians}\approx 116.57^\circ$. +Find a unit vector orthogonal to the vector $\vv=\c12$
-  - The points $A=(2,3)$, $B=(3,6)$ and $C=(-4,5)$ are the vertices of a right-angled triangle. Indeed, we have $\vec{AB}=\c36-\c23=\c13$ and $\vec{AC}=\c{-4}5-\c23=\c{-6}2$, so $\vec{AB}\cdot\vec{AC}=\c13\cdot\c{-6}2=1(-6)+3(2)=0$, so the sides $AB$ and $AC$ are at right-angles. +  * Observe that $\ww=\c{-2}1$ has $\vv\cdot\ww=0$ 
-  - To find a unit vector orthogonal to the vector $\vv=\c12$, we can first observe that $\ww=\c{-2}1$ has $\vv\cdot\ww=0$, so $\vv$ and $\ww$ are orthogonal; and then consider the vector $\vec u=\frac1{\|\ww\|}\ww$, which is a unit vector in the same direction as $\ww$, so is also orthogonal to $\vv$. Hence $\vec u=\frac1{\sqrt5}\c{-2}1=\c{-2/\sqrt5}{1/\sqrt5}$ is a unit vector orthogonal to $\vv=\c12$.+  * So $\vv$ and $\ww$ are orthogonal 
 +  * $\vec u=\frac1{\|\ww\|}\ww$ is a unit vector in the same direction as $\ww$, (so is also orthogonal to $\vv$) 
 +  * So $\vec u=\frac1{\sqrt5}\c{-2}1=\c{-2/\sqrt5}{1/\sqrt5}$ is a unit vector orthogonal to $\vv=\c12$.
lecture_17_slides.1459786647.txt.gz · Last modified: by rupert

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki