User Tools

Site Tools


Plugin installed incorrectly. Rename plugin directory '_include' to 'include'.
Plugin installed incorrectly. Rename plugin directory '__include' to 'include'.
lecture_16_slides

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
lecture_16_slides [2016/03/30 15:26] rupertlecture_16_slides [2017/04/03 15:26] (current) rupert
Line 1: Line 1:
 ~~REVEAL~~ ~~REVEAL~~
-  
-==== Example: $n=3$ ==== 
  
-Let $\def\mat#1{\left[\begin{smallmatrix}#1\end{smallmatrix}\right]}A=\mat{3&1&0\\-2&-4&3\\5&4&-2}$. 
-  * Matrix of signs: $\mat{+&-&+\\-&+&-\\+&-&+}$ 
-  * Matrix of cofactors: $C=\def\vm#1{\left|\begin{smallmatrix}#1\end{smallmatrix}\right|}\mat{\vm{-4&3\\4&-2}&-\vm{-2&3\\5&-2}&\vm{-2&-4\\5&4}\\-\vm{1&0\\4&-2}&\vm{3&0\\5&-2}&-\vm{3&1\\5&4}\\\vm{1&0\\-4&3}&-\vm{3&0\\-2&3}&\vm{3&1\\-2&-4}}= \mat{-4&11&12\\2&-6&-7\\3&-9&-10}$ 
-  * So the adjoint of $A$ is $J=C^T=\mat{-4&2&3\\11&-6&-9\\12&-7&-10}$. 
  
-==== ==== +===== Finding the inverse of an invertible $n\times nmatrix ===== 
-  * Adjoint of $A=\mat{3&1&0\\-2&-4&3\\5&4&-2}is $J=\mat{-4&2&3\\11&-6&-9\\12&-7&-10}$ + 
-  * $AJ=\mat{3&1&0\\-2&-4&3\\5&4&-2}\mat{-4&2&3\\11&-6&-9\\12&-7&-10}=\mat{-1&0&0\\0&-1&0\\0&0&-1}=-1\cdot I_3$ +==== The adjoint of a square matrix ===
-  * $JA=\mat{-4&2&3\\11&-6&-9\\12&-7&-10}\mat{3&1&0\\-2&-4&3\\5&4&-2}=\mat{-1&0&0\\0&-1&0\\0&0&-1}=-1\cdot I_3$ + 
-  * So $A^{-1}=-J$. +{{page>adjoint}}
-  * And $\det(A)=-1$. +
-  * So $A^{-1}=\frac1{\det(A)}J$ again.+
  
 ==== Theorem: key property of the adjoint of a square matrix ==== ==== Theorem: key property of the adjoint of a square matrix ====
Line 31: Line 23:
  
   * Divide the equation $AJ=(\det A)I_n=JA$ by $\det A$.   * Divide the equation $AJ=(\det A)I_n=JA$ by $\det A$.
-  * $A(\frac1{\det A}J)=I_n=(\frac1{\det A})JA$+  * $A(\frac1{\det A}J)=I_n=(\frac1{\det A}J)A$
   * So $A^{-1}=\frac1{\det A} J$.  ■    * So $A^{-1}=\frac1{\det A} J$.  ■ 
 +
 +==== Example: $n=2$ ====
 +
 +If $A=\def\mat#1{\begin{bmatrix}#1\end{bmatrix}}\def\vm#1{\begin{vmatrix}#1\end{vmatrix}}\mat{a&b\\c&d}$, then $C=\mat{d&-c\\-b&a}$, so the adjoint of $A$ is $J=C^T=\mat{d&-b\\-c&a}$. 
 +
 +  * So if $\det A\ne0$, then $A^{-1}=\frac1{\det A}J=\frac1{ad-bc}\mat{d&-b\\-c&a}$.
 +  * Same as previous formula!
 +
 +==== Example: $n=3$ ====
 +
 +Find $J$, the adjoint of $\def\mat#1{\left[\begin{smallmatrix}#1\end{smallmatrix}\right]}A=\mat{3&1&0\\-2&-4&3\\5&4&-2}$, and compute $AJ$, $JA$, $\det(A)$ and $A^{-1}$.
 +  * Matrix of signs: $\mat{+&-&+\\-&+&-\\+&-&+}$
 +  * Matrix of cofactors: $C=\def\vm#1{\left|\begin{smallmatrix}#1\end{smallmatrix}\right|}\mat{\vm{-4&3\\4&-2}&-\vm{-2&3\\5&-2}&\vm{-2&-4\\5&4}\\-\vm{1&0\\4&-2}&\vm{3&0\\5&-2}&-\vm{3&1\\5&4}\\\vm{1&0\\-4&3}&-\vm{3&0\\-2&3}&\vm{3&1\\-2&-4}}= \mat{-4&11&12\\2&-6&-7\\3&-9&-10}$
 +
 +==== ====
 +  * Adjoint of $A=\mat{3&1&0\\-2&-4&3\\5&4&-2}$ is $J=C^T=\mat{-4&2&3\\11&-6&-9\\12&-7&-10}$
 +  * $AJ=\mat{3&1&0\\-2&-4&3\\5&4&-2}\mat{-4&2&3\\11&-6&-9\\12&-7&-10}=\mat{-1&0&0\\0&-1&0\\0&0&-1}=-1\cdot I_3$
 +  * $JA=\mat{-4&2&3\\11&-6&-9\\12&-7&-10}\mat{3&1&0\\-2&-4&3\\5&4&-2}=\mat{-1&0&0\\0&-1&0\\0&0&-1}=-1\cdot I_3$
 +  * So $\det(A)=-1$.
 +  * So $A^{-1}=\frac1{\det(A)}J=-J=\mat{4&-11&-12\\-2&6&7\\-3&9&10}$.
  
 ==== Example ($n=4$) ==== ==== Example ($n=4$) ====
Line 47: Line 59:
   * So $A^{-1}=\frac1{\det A}J = \frac1{24}\mat{24&0&0&0\\-12&12&0&0\\0&-8&8&0\\0&0&-6&6}=\mat{1&0&0&0\\-1/2&1/2&0&0\\0&-1/3&1/3&0\\0&0&-1/4&1/4}$.   * So $A^{-1}=\frac1{\det A}J = \frac1{24}\mat{24&0&0&0\\-12&12&0&0\\0&-8&8&0\\0&0&-6&6}=\mat{1&0&0&0\\-1/2&1/2&0&0\\0&-1/3&1/3&0\\0&0&-1/4&1/4}$.
   * (Easy to check that $AA^{-1}=I_4=A^{-1}A$.)   * (Easy to check that $AA^{-1}=I_4=A^{-1}A$.)
- 
- 
- 
  
 ===== A more efficient way to find $A^{-1}$ ===== ===== A more efficient way to find $A^{-1}$ =====
Line 100: Line 109:
   * So $\m{A&I_3}\xrightarrow{\text{EROs}}\go{1&0&0\\0&1&0\\0&0&1}{4&-2&3\\-11&6&9\\-12&7&10}$   * So $\m{A&I_3}\xrightarrow{\text{EROs}}\go{1&0&0\\0&1&0\\0&0&1}{4&-2&3\\-11&6&9\\-12&7&10}$
   * Conclusion: $A$ is invertible, and $A^{-1}=\left[\mat{4&-2&3\\-11&6&9\\-12&7&10}\right]$.   * Conclusion: $A$ is invertible, and $A^{-1}=\left[\mat{4&-2&3\\-11&6&9\\-12&7&10}\right]$.
- 
- 
-====== Chapter 3: Vectors and geometry ====== 
- 
-==== Vectors ==== 
- 
-  * $\def\m#1{\begin{bmatrix}#1\end{bmatrix}}\m{4\\3}$ is a $2\times 1$ column vector 
-  * i.e., a pair of numbers written in a column 
-  * We also use pairs of numbers to write points in the plane $\mathbb R^2$ 
-  * e.g., $(4,3)$ is a point 
-    * you get there by starting from the origin, moving $4$ units to the right and $3$ units up. 
-  * We think $\vec v=\m{4\\3}$ as an instruction to move $4$ units to the right and $3$ units up.  
-  * This movement is called "translation by $\vec v$" 
- 
-==== Translation by $\vec v$ ==== 
- 
-The vector $\vec v=\m{4\\3}$ moves: 
- 
-  * $(0,0)$ to $(4,3)$ 
-  * $(-2,6)$ to $(2,9)$ 
-  * $(x,y)$ to $(x+4,y+3)$. 
- 
-  * We're not too fussy about the difference between points like $(4,3)$ and vectors like $\m{4\\3}$. 
-  * If we write points as column vectors, we can perform algebra (addition, subtraction, scalar multiplication) using points and column vectors. 
- 
-==== ==== 
- 
-For example, we could rewrite the examples above by saying that $\vec v=\m{4\\3}$ moves: 
- 
-  * $\m{0\\0}$ to $\m{0\\0}+\m{4\\3}=\m{4\\3}$ 
-  * $\m{-2\\6}$ to $\m{-2\\6}+\m{4\\3}=\m{2\\9}$ 
-  * $\m{x\\y}$ to $\m{x\\y}+\m{4\\3}=\m{x+4\\y+3}$. 
- 
-  * More generally: a column vector $\vec v$ moves a point $\vec x$ to $\vec x+\vec v$. 
- 
-==== Example ==== 
- 
-Which vector $\vec v$ moves the point $A=(-1,3)$ to $B=(5,-4)$? 
- 
-  * We need a vector $\vec v$ with $A+\vec v=B$ 
-  * So $\vec v=B-A = \m{5\\-4}-\m{-1\\3}=\m{6\\-7}$.  
- 
-  * We write $\vec{AB}=\m{6\\-7}$, since this is the vector which moves $A$ to $B$. 
- 
-==== Definition of $\vec{AB}$ ==== 
- 
-If $A$ and $B$ are any points in $\mathbb{R}^n$, then the vector $\vec{AB}$ is defined by  
-\[ \vec{AB}=B-A\] 
-(where on the right hand side, we interpret the points as column vectors so we can subtract them to get a column vector). 
- 
-Thus $\vec{AB}$ is the vector which moves the point $A$ to the point $B$. 
- 
-=== Example === 
- 
-In $\mathbb{R}^3$, the points $A=(3,-4,5)$ and $B=(11,6,-2)$ have $\vec{AB}=\m{11\\6\\-2}-\m{3\\-4\\5}=\m{8\\10\\-7}$. 
- 
-==== The uses of vectors ==== 
- 
-Vectors are used in geometry and science to represent quantities with both a **magnitude** (size/length) and a **direction**. For example: 
- 
-  * displacements (in geometry) 
-  * velocities 
-  * forces 
- 
-Recall that a column vector moves points. Its magnitude, or length, is how far it moves points. 
- 
-==== Definition: the length of a vector ==== 
- 
-If $\vec v=\m{v_1\\v_2\\\vdots\\v_n}$ is a column vector in $\mathbb{R}^n$, then its **magnitude**, or **length**, or **norm**, is the number 
-\[ \|\vec v\|=\sqrt{v_1^2+v_2^2+\dots+v_n^2}.\] 
- 
-==== Examples ==== 
- 
-  * $\left\|\m{4\\3}\right\|=\sqrt{4^2+3^2}=\sqrt{16+9}=\sqrt{25}=5$ 
-  * $\left\|\m{1\\0\\-2\\3}\right\|=\sqrt{1^2+0^2+(-2)^2+3^2}=\sqrt{1+0+4+9}=\sqrt{14}$ 
- 
-==== Exercise ==== 
- 
-Prove that if $c\in \mathbb{R}$ is a scalar and $\vec v$ is a vector in $\mathbb{R}^n$, then  
-\[ \|c\vec v\|=|c|\,\|\vec v\|.\] 
-That is, multiplying a vector by a scalar $c$ scales its length by $|c|$, the absolute value of $c$. 
  
lecture_16_slides.1459351577.txt.gz · Last modified: by rupert

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki