User Tools

Site Tools


Plugin installed incorrectly. Rename plugin directory '_include' to 'include'.
Plugin installed incorrectly. Rename plugin directory '__include' to 'include'.
lecture_15_slides

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
lecture_15_slides [2017/03/27 17:05] rupertlecture_15_slides [2017/03/27 17:31] (current) – [Example: $n=3$] rupert
Line 6: Line 6:
   * Key property: $A$ is invertible if and only if $\det(A)\ne0$   * Key property: $A$ is invertible if and only if $\det(A)\ne0$
   * Laplace expansion along any row/col gives $\det(A)$   * Laplace expansion along any row/col gives $\det(A)$
-    * Formula: entries times cofactors, added up along row/col +    * Formula: sum of (entries $\timescofactorsalong the row/col 
-    * cofactor: $\pm$ minor, with $\pm$ from matrix of signs +    * cofactor: $\pm$ minor ($\pm$ from matrix of signs) 
-    * minor: delete a row and column entry and find the determinant +    * minor: delete a row column, then find determinant 
-  * $\det(A^T)=\det(A)$ +  * $\det(A^T)=\det(A)$ and $\det(AB)=\det(A)\det(B)$
-  * $\det(AB)=\det(A)\det(B)$+
   * If $A$ upper triangular: $\det(A)=$ product of diagonal entries   * If $A$ upper triangular: $\det(A)=$ product of diagonal entries
  
Line 30: Line 29:
  
   * Also, these properties all hold if you change "row" into "column" throughout.   * Also, these properties all hold if you change "row" into "column" throughout.
- 
-==== Corollary ==== 
- 
-If an $n\times n$ matrix $A$ has two equal rows (or columns), then $\det(A)=0$, and $A$ is not invertible. 
- 
-=== Proof === 
- 
-  * Suppose $A$ has two equal rows, row $i$ and row $j$. 
-  * Then $A=A_{Ri\leftrightarrow Rj}$ 
-  * So $\det(A)=\det(A_{Ri\leftrightarrow Rj}) = -\det(A)$ 
-  * So $\det(A)=0$. 
- 
-  * If $A$ has two equal columns, then $A^T$ has two equal rows 
-  * So $\det(A)=\det(A^T)=0$.  
- 
-  * In either case, $\det(A)=0$. So $A$ is not invertible.■  
- 
-==== Examples ==== 
- 
-  * $\det(A_{Ri\leftrightarrow Rj})=-\det(A)$, so $\vm{0&0&2\\0&3&0\\4&0&0} = -\vm{4&0&0\\0&3&0\\0&0&2}=-4\cdot 3\cdot 2 = -24$. 
- 
-==== ==== 
-  * $\det(A_{Ri\to c Ri})=c\det(A)$, and the same for columns. So \begin{align*}\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\vm{ 2&4&6&10\\5&0&0&-10\\9&0&81&99\\1&2&3&4} &= 2\vm{ 1&2&3&5\\5&0&0&-10\\9&0&81&99\\1&2&3&4} = 2\cdot 5\vm{ 1&2&3&5\\1&0&0&-2\\9&0&81&99\\1&2&3&4}\\& 2\cdot 5\cdot 9 \vm{ 1&2&3&5\\1&0&0&-2\\1&0&9&11\\1&2&3&4}=2\cdot 5\cdot 9\cdot 2 \vm{ 1&1&3&5\\1&0&0&-2\\1&0&9&11\\1&1&3&4}\\&=2\cdot 5\cdot 9\cdot 2\cdot 3 \vm{ 1&1&1&5\\1&0&0&-2\\1&0&3&11\\1&1&1&4}.\end{align*} 
- 
-==== ==== 
-  * $\det(A_{R1\to R1-R4})=\det(A)$, so \begin{align*}\vm{ 1&1&1&5\\1&0&0&-2\\1&0&3&11\\1&1&1&4} &=\vm{ 0&0&0&1\\1&0&0&-2\\1&0&3&11\\1&1&1&4}=-1\vm{1&0&0\\1&0&3\\1&1&1}+0\\&=-\vm{0&3\\1&1} = -(-3)=3.\end{align*} 
-  * Hence \begin{align*}\vm{ 2&4&6&10\\5&0&0&-10\\9&0&81&99\\1&2&3&4} &= 2\cdot 5\cdot 9\cdot 2\cdot 3 \vm{ 1&1&1&5\\1&0&0&-2\\1&0&3&11\\1&1&1&4} \\&= 2\cdot 5\cdot 9\cdot 2\cdot 3 \cdot 3 = 1620.\end{align*} 
- 
-==== Corollary === 
- 
-If $\def\row{\text{row}}\row_i(A)=c\cdot \row_j(A)$ for some $i\ne j$ and some $c\in \mathbb{R}$, then $\det(A)=0$ (and so $A$ isn't invertible). 
- 
-=== Proof === 
- 
-  * $\row_i(A)-c \cdot\row_j(A)=0$ 
-  * So $A_{Ri\to Ri-c\,Rj}$ has a zero row 
-  * So $\det(A_{Ri\to Ri-c\,Rj})=0$ 
-  * So $\det(A)=\det(A_{Ri\to Ri-c\,Rj})=0$.■ 
- 
-==== Effect of EROs on the determinant ==== 
- 
-We've seen that: 
- 
-  - swapping two rows of the matrix multiplies the determinant by $-1$; 
-  - scaling one of the rows of the matrix by $c$ scales the determinant by $c$; and 
-  - replacing row $j$ by "row $j$ ${}+{}$ $c\times {}$ (row $i$)", where $c$ is a scalar and $i\ne j$ does not change the determinant. 
- 
-  * Since $\det(A)=\det(A^T)$, this all applies equally to columns instead of rows. 
- 
-==== Using EROs to find the determinant ==== 
- 
-  * Can use EROs to put a matrix into upper triangular form 
-  * Then finding the determinant is easy: just multiply the diagonal entries together. 
-  * Just have to keep track of how the determinant is changed by any row swaps and row scalings. 
- 
-==== Example: using EROs to find the determinant ==== 
- 
-\begin{align*}\vm{1&3&1&3\\\color{red}4&\color{red}8&\color{red}0&\color{red}{12}\\0&1&3&6\\2&2&1&6}&= \color{red}{4}\vm{1&3&1&\color{blue}3\\1&2&0&\color{blue}3\\0&1&3&\color{blue}6\\2&2&1&\color{blue}6}=4\cdot \color{blue}3\vm{\color{green}1&3&1&1\\\color{red}1&2&0&1\\\color{red}0&1&3&2\\\color{red}2&2&1&2} 
-\\&=12\vm{1&3&1&1\\\color{blue}0&\color{blue}{-1}&\color{blue}{-1}&\color{blue}{0}\\\color{blue}0&\color{blue}1&\color{blue}3&\color{blue}2\\0&-4&-1&-0} 
-=\color{blue}{-}12\vm{1&3&1&1\\0&\color{green}1&3&2\\0&\color{red}{-1}&{-1}&{0}\\0&\color{red}{-4}&-1&0} 
-\\&=-12\vm{1&3&1&1\\0&1&3&2\\0&0&\color{green}2&2\\0&0&\color{red}{11}&8} 
-=-12\vm{1&3&1&1\\0&1&3&2\\0&0&2&2\\0&0&0&-3} 
-\\&=-12(1)(1)(2)(-3)=72. 
-\end{align*} 
- 
  
  
Line 117: Line 51:
  
   * $\det(A_{Ri\leftrightarrow Rj})=-\det(A)$, so $\def\vm#1{\left|\begin{smallmatrix}#1\end{smallmatrix}\right|}\vm{0&0&2\\0&3&15\\4&23&2} = -\vm{4&23&2\\0&3&15\\0&0&2}=-4\cdot 3\cdot 2 = -24$.   * $\det(A_{Ri\leftrightarrow Rj})=-\det(A)$, so $\def\vm#1{\left|\begin{smallmatrix}#1\end{smallmatrix}\right|}\vm{0&0&2\\0&3&15\\4&23&2} = -\vm{4&23&2\\0&3&15\\0&0&2}=-4\cdot 3\cdot 2 = -24$.
-  * $\det(A_{Ri\to c Ri})=c\det(A)$, and the same for columns. So \begin{align*}\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\vm{ 2&4&6&10\\5&0&0&-10\\9&0&81&99\\1&2&3&4} &= 2\vm1&2&3&5\\5&0&0&-10\\9&0&81&99\\1&2&3&4= 2\cdot 5\vm1&2&3&5\\1&0&0&-2\\9&0&81&99\\1&2&3&4}\\& 2\cdot 5\cdot 9 \vm{ 1&2&3&5\\1&0&0&-2\\1&0&9&11\\1&2&3&4}=2\cdot 5\cdot 9\cdot 2 \vm1&1&3&5\\1&0&0&-2\\1&0&9&11\\1&1&3&4}\\&=2\cdot 5\cdot 9\cdot 2\cdot 3 \vm{ 1&1&1&5\\1&0&0&-2\\1&0&3&11\\1&1&1&4}.\end{align*}+  * $\det(A_{Ri\to c Ri})=c\det(A)$, and the same for columns. So \begin{align*}\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\vm{ \color{red}2&\color{red}4&\color{red}6&\color{red}{10}\\\color{blue}5&\color{blue}0&\color{blue}0&-\color{blue}{10}\\\color{orange}9&\color{orange}0&\color{orange}{81}&\color{orange}{99}\\1&2&3&4} &\color{red}2\cdot \color{blue}5\cdot \color{orange}9 \vm{ 1&\color{green}2&\color{pink}3&5\\1&\color{green}0&\color{pink}0&-2\\1&\color{green}0&\color{pink}9&11\\1&\color{green}2&\color{pink}3&4}\\&=2\cdot 5\cdot 9\cdot \color{green}2\cdot\color{pink} 3 \vm{ 1&1&1&5\\1&0&0&-2\\1&0&3&11\\1&1&1&4}.\end{align*}
  
 ==== ==== ==== ====
Line 152: Line 86:
 ==== Example: using EROs to find the determinant ==== ==== Example: using EROs to find the determinant ====
  
-\begin{align*}\vm{1&3&1&3\\\color{red}4&\color{red}8&\color{red}0&\color{red}{12}\\0&1&3&6\\2&2&1&6}&= \color{red}{4}\vm{1&3&1&\color{blue}3\\1&2&0&\color{blue}3\\0&1&3&\color{blue}6\\2&2&1&\color{blue}6}=4\cdot \color{blue}3\vm{\color{green}1&3&1&1\\\color{red}1&2&0&1\\\color{red}0&1&3&2\\\color{red}2&2&1&2}+\begin{align*}\def\vm#1{\left|\begin{smallmatrix}#1\end{smallmatrix}\right|}\vm{1&3&1&3\\\color{red}4&\color{red}8&\color{red}0&\color{red}{12}\\0&1&3&6\\2&2&1&6}&= \color{red}{4}\vm{1&3&1&\color{blue}3\\1&2&0&\color{blue}3\\0&1&3&\color{blue}6\\2&2&1&\color{blue}6}=4\cdot \color{blue}3\vm{\color{green}1&3&1&1\\\color{red}1&2&0&1\\\color{red}0&1&3&2\\\color{red}2&2&1&2}
 \\&=12\vm{1&3&1&1\\\color{blue}0&\color{blue}{-1}&\color{blue}{-1}&\color{blue}{0}\\\color{blue}0&\color{blue}1&\color{blue}3&\color{blue}2\\0&-4&-1&-0} \\&=12\vm{1&3&1&1\\\color{blue}0&\color{blue}{-1}&\color{blue}{-1}&\color{blue}{0}\\\color{blue}0&\color{blue}1&\color{blue}3&\color{blue}2\\0&-4&-1&-0}
 =\color{blue}{-}12\vm{1&3&1&1\\0&\color{green}1&3&2\\0&\color{red}{-1}&{-1}&{0}\\0&\color{red}{-4}&-1&0} =\color{blue}{-}12\vm{1&3&1&1\\0&\color{green}1&3&2\\0&\color{red}{-1}&{-1}&{0}\\0&\color{red}{-4}&-1&0}
 \\&=-12\vm{1&3&1&1\\0&1&3&2\\0&0&\color{green}2&2\\0&0&\color{red}{11}&8} \\&=-12\vm{1&3&1&1\\0&1&3&2\\0&0&\color{green}2&2\\0&0&\color{red}{11}&8}
 =-12\vm{1&3&1&1\\0&1&3&2\\0&0&2&2\\0&0&0&-3} =-12\vm{1&3&1&1\\0&1&3&2\\0&0&2&2\\0&0&0&-3}
-\\&=-12(1)(1)(2)(-3)=72.+\\&=-12(1\times1\times2\times(-3))=72.
 \end{align*} \end{align*}
 +
  
 ===== Finding the inverse of an invertible $n\times n$ matrix ===== ===== Finding the inverse of an invertible $n\times n$ matrix =====
Line 175: Line 110:
 ==== Example: $n=3$ ==== ==== Example: $n=3$ ====
  
-Let $\def\mat#1{\left[\begin{smallmatrix}#1\end{smallmatrix}\right]}A=\mat{3&1&0\\-2&-4&3\\5&4&-2}$.+Find $J$, the adjoint of $\def\mat#1{\left[\begin{smallmatrix}#1\end{smallmatrix}\right]}A=\mat{3&1&0\\-2&-4&3\\5&4&-2}$, and compute $A^{-1}$.
   * Matrix of signs: $\mat{+&-&+\\-&+&-\\+&-&+}$   * Matrix of signs: $\mat{+&-&+\\-&+&-\\+&-&+}$
-  * Matrix of cofactors: $C=\mat{\vm{-4&3\\4&-2}&-\vm{-2&3\\5&-2}&\vm{-2&-4\\5&4}\\-\vm{1&0\\4&-2}&\vm{3&0\\5&-2}&-\vm{3&1\\5&4}\\\vm{1&0\\-4&3}&-\vm{3&0\\-2&3}&\vm{3&1\\-2&-4}}= \mat{-4&11&12\\2&-6&-7\\3&-9&-10}$ +  * Matrix of cofactors: $C=\def\vm#1{\left|\begin{smallmatrix}#1\end{smallmatrix}\right|}\mat{\vm{-4&3\\4&-2}&-\vm{-2&3\\5&-2}&\vm{-2&-4\\5&4}\\-\vm{1&0\\4&-2}&\vm{3&0\\5&-2}&-\vm{3&1\\5&4}\\\vm{1&0\\-4&3}&-\vm{3&0\\-2&3}&\vm{3&1\\-2&-4}}= \mat{-4&11&12\\2&-6&-7\\3&-9&-10}$
-  * So the adjoint of $A$ is $J=C^T=\mat{-4&2&3\\11&-6&-9\\12&-7&-10}$.+
  
 ==== ==== ==== ====
-  * Adjoint of $A=\mat{3&1&0\\-2&-4&3\\5&4&-2}$ is $J=\mat{-4&2&3\\11&-6&-9\\12&-7&-10}$+  * Adjoint of $A=\mat{3&1&0\\-2&-4&3\\5&4&-2}$ is $J=C^T=\mat{-4&2&3\\11&-6&-9\\12&-7&-10}$
   * $AJ=\mat{3&1&0\\-2&-4&3\\5&4&-2}\mat{-4&2&3\\11&-6&-9\\12&-7&-10}=\mat{-1&0&0\\0&-1&0\\0&0&-1}=-1\cdot I_3$   * $AJ=\mat{3&1&0\\-2&-4&3\\5&4&-2}\mat{-4&2&3\\11&-6&-9\\12&-7&-10}=\mat{-1&0&0\\0&-1&0\\0&0&-1}=-1\cdot I_3$
   * $JA=\mat{-4&2&3\\11&-6&-9\\12&-7&-10}\mat{3&1&0\\-2&-4&3\\5&4&-2}=\mat{-1&0&0\\0&-1&0\\0&0&-1}=-1\cdot I_3$   * $JA=\mat{-4&2&3\\11&-6&-9\\12&-7&-10}\mat{3&1&0\\-2&-4&3\\5&4&-2}=\mat{-1&0&0\\0&-1&0\\0&0&-1}=-1\cdot I_3$
Line 198: Line 132:
 ==== Corollary: a formula for the inverse of a square matrix ==== ==== Corollary: a formula for the inverse of a square matrix ====
  
-If $A$ is any $n\times n$ matrix with $\det(A)\ne 0$, then $A$ is invertible and \[A^{-1}=\frac1{\det A}J\] where $J$ is the adjoint of $A$.+If $A$ is any $n\times n$ matrix with $\det(A)\ne 0$, then $A$ is invertibleand $A^{-1}=\frac1{\det A}Jwhere $J$ is the adjoint of $A$.
  
 === Proof === === Proof ===
  
-  * Divide the equation $AJ=(\det A)I_n=JA$ by $\det A$.  ■ +  * Divide the equation $AJ=(\det A)I_n=JA$ by $\det A$. 
 +  * $A(\frac1{\det A}J)=I_n=(\frac1{\det A})JA$ 
 +  * So $A^{-1}=\frac1{\det A} J$.  ■  
 + 
 +==== Example ($n=4$) ==== 
 + 
 +Let $A=\mat{1&0&0&0\\1&2&0&0\\1&2&3&0\\1&2&3&4}$. 
 + 
 +  * Reminder: repeated row or zero row gives determinant zero 
 +  * $C=\mat{+\vm{2&0&0\\2&3&0\\2&3&4}&-\vm{1&0&0\\1&3&0\\1&3&4}&+0&-0\\-0&+\vm{1&0&0\\1&3&0\\1&3&4}&-\vm{1&0&0\\1&2&0\\1&2&4}&+0\\+0&-0&+\vm{1&0&0\\1&2&0\\1&2&4}&-\vm{1&0&0\\1&2&0\\1&2&3}\\-0&+0&-0&+\vm{1&0&0\\1&2&0\\1&2&3}}=\mat{24&-12&0&0\\0&12&-8&0\\0&0&8&-6\\0&0&0&6}$ 
 +==== Example ($n=4$) ==== 
 + 
 +Let $A=\mat{1&0&0&0\\1&2&0&0\\1&2&3&0\\1&2&3&4}$. 
 + 
 +  * $C=\mat{24&-12&0&0\\0&12&-8&0\\0&0&8&-6\\0&0&0&6}$ so $J=C^T=\mat{24&0&0&0\\-12&12&0&0\\0&-8&8&0\\0&0&-6&6}$. 
 +  * So $A^{-1}=\frac1{\det A}J = \frac1{24}\mat{24&0&0&0\\-12&12&0&0\\0&-8&8&0\\0&0&-6&6}=\mat{1&0&0&0\\-1/2&1/2&0&0\\0&-1/3&1/3&0\\0&0&-1/4&1/4}$. 
 +  * (Easy to check that $AA^{-1}=I_4=A^{-1}A$.) 
 + 
  
-==== Example ==== 
  
-If again we take $A=\mat{3&1&0\\-2&-4&3\\5&4&-2}$, then $J=\mat{-4&2&3\\11&-6&-9\\12&-7&-10}$ and $\det(A)=-1$, so $A$ is invertible and $A^{-1}=\frac1{-1}J=-J=\mat{4&-2&-3\\-11&6&9\\-12&7&10}$. 
  
lecture_15_slides.1490634342.txt.gz · Last modified: by rupert

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki