User Tools

Site Tools


Plugin installed incorrectly. Rename plugin directory '_include' to 'include'.
Plugin installed incorrectly. Rename plugin directory '__include' to 'include'.
lecture_13_slides

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
lecture_13_slides [2017/03/06 17:39] – [Using the inverse to solve a matrix equation] rupertlecture_13_slides [2017/03/06 17:48] (current) – [Example] rupert
Line 93: Line 93:
   * Short version: to find $M_{ij}$: delete the row and col containing $(i,j)$ entry, then take determinant.   * Short version: to find $M_{ij}$: delete the row and col containing $(i,j)$ entry, then take determinant.
  
-==== Examples of minors ====+==== Examples of minors (1) ====
  
 Short version: to find $M_{ij}$: delete the row and col containing $(i,j)$ entry, then take determinant. Short version: to find $M_{ij}$: delete the row and col containing $(i,j)$ entry, then take determinant.
  
  
-  - If $A=\mat{3&5\\-4&7}$, then  +Example: for $A=\mat{3&5\\-4&7}$: 
-    * $M_{11}=\det[7]=7$ +  * $M_{11}=\det[7]=7$ 
-    * $M_{12}=\det[-4]=-4$ +  * $M_{12}=\det[-4]=-4$ 
-    * $M_{21}=5$ +  * $M_{21}=5$ 
-    * $M_{22}=3$. +  * $M_{22}=3$. 
-  - If $A=\mat{1&2&3\\7&8&9\\11&12&13}$, then  + 
-    * $M_{23}=\det\mat{1&2\\11&12}=1\cdot 12-2\cdot 11=-10$ +==== Examples of minors (2) ==== 
-    * $M_{32}=\det\mat{1&3\\7&9}=-12$.+ 
 +Short version: to find $M_{ij}$: delete the row and col containing $(i,j)$ entry, then take determinant. 
 + 
 +Example: for $A=\mat{1&2&3\\7&8&9\\11&12&13}$: 
 +  * $M_{23}=\det\mat{1&2\\11&12}=1\cdot 12-2\cdot 11=-10$ 
 +  * $M_{32}=\det\mat{1&3\\7&9}=-12$ 
 +  * etc
  
 ==== Step 2: cofactors ==== ==== Step 2: cofactors ====
Line 117: Line 123:
  
   * Short version: minors with some sign changes (according to matrix of signs).   * Short version: minors with some sign changes (according to matrix of signs).
-====Examples of cofactors====+====Examples of cofactors (1)====
  
 Short version: minors with sign changes $\mat{+&-&+&-&\dots\\-&+&-&+&\dots\\+&-&+&-&\dots\\\vdots&\vdots&\vdots&\vdots&\ddots}$ Short version: minors with sign changes $\mat{+&-&+&-&\dots\\-&+&-&+&\dots\\+&-&+&-&\dots\\\vdots&\vdots&\vdots&\vdots&\ddots}$
  
-  - If $A=\mat{3&5\\-4&7}$, then  +If $A=\mat{3&5\\-4&7}$, then  
-    * $C_{11}=+M_{11}=\det[7]=7$ +  * $C_{11}=+M_{11}=\det[7]=7$ 
-    * $C_{12}=-M_{12}=-\det[-4]=4$ +  * $C_{12}=-M_{12}=-\det[-4]=4$ 
-    * $C_{21}=-5$, and $C_{22}=3$. +  * $C_{21}=-5$, and $C_{22}=3$. 
-  - If $A=\mat{1&2&3\\7&8&9\\11&12&13}$, then  + 
-    * $C_{23}=-M_{23}=-(-10)=10$ +====Examples of cofactors (2)==== 
-    * $C_{33}=+M_{33}=\det\mat{1&2\\7&8}=-6$.+ 
 +Short version: minors with sign changes $\mat{+&-&+&-&\dots\\-&+&-&+&\dots\\+&-&+&-&\dots\\\vdots&\vdots&\vdots&\vdots&\ddots}$ 
 + 
 +If $A=\mat{1&2&3\\7&8&9\\11&12&13}$, then  
 +  * $C_{23}=-M_{23}=-(-10)=10$ 
 +  * $C_{33}=+M_{33}=\det\mat{1&2\\7&8}=-6$ 
 +  * etc
  
 ==== Step 3: the determinant of a $3\times 3$ matrix ==== ==== Step 3: the determinant of a $3\times 3$ matrix ====
Line 148: Line 160:
   * = $-4 -2(-8)+3(-4)$   * = $-4 -2(-8)+3(-4)$
   * = $0$.   * = $0$.
- +  (So this matrix isn'invertible!)
-  * $\mat{1&2&3\\7&8&9\\11&12&13}$ has zero determinant +
-  * So this matrix is //not// invertible.+
  
 ==== Notation ==== ==== Notation ====
Line 173: Line 183:
  
 \begin{align*} \begin{align*}
-\vm{\color{red}1&\color{red}0&\color{red}2&\color{red}3\\0&2&1&-1\\2&0&0&1\\3&0&4&2} &= \color{red}1\vm{\color{blue}2&\color{blue}1&\color{blue}-1\\0&0&1\\0&4&2}-\color{red}0\vm{0&1&-1\\2&0&1\\3&4&2}+\color{red}2\vm{\color{orange}0&\color{orange}2&\color{orange}{-1}\\2&0&1\\3&0&2}-\color{red}3\vm{\color{purple}0&\color{purple}2&\color{purple}1\\2&0&0\\3&0&4}\\ +\def\vm#1{\left|\begin{smallmatrix}#1\end{smallmatrix}\right|} 
-&= 1\left(\color{blue}2\vm{0&1\\4&2}-\color{blue}1\vm{0&1\\0&2}\color{blue}{-1}\vm{0&0\\0&4}\right)\\&\quad +2\left(\color{orange}0-\color{orange}{2}\vm{2&1\\3&2}\color{orange}{-1}\vm{2&0\\3&0}\right)\\&\quad - 3\left(\color{purple}0-\color{purple}2\vm{2&0\\3&4}+\color{purple}1\vm{2&0\\3&0}\right)\\ +\vm{\color{red}1&\color{red}0&\color{red}2&\color{red}3\\0&2&1&-1\\2&0&0&1\\3&0&4&2}  
-&=1(2(-4)-0-0)+2(-2(1)-0)-3(-2(8)+0)\\ +&= \color{red}1\vm{\color{blue}2&\color{blue}1&\color{blue}-1\\0&0&1\\0&4&2}-\color{red}0\vm{0&1&-1\\2&0&1\\3&4&2}+\color{red}2\vm{\color{orange}0&\color{orange}2&\color{orange}{-1}\\2&0&1\\3&0&2}-\color{red}3\vm{\color{purple}0&\color{purple}2&\color{purple}1\\2&0&0\\3&0&4} 
-&=-8-4+48\\+\\&= 1\left(\color{blue}2\vm{0&1\\4&2}-\color{blue}1\vm{0&1\\0&2}\color{blue}{-1}\vm{0&0\\0&4}\right) 
 +\\&\quad -0+2\left(\color{orange}0-\color{orange}{2}\vm{2&1\\3&2}\color{orange}{-1}\vm{2&0\\3&0}\right) 
 +\\&\quad -3\left(\color{purple}0-\color{purple}2\vm{2&0\\3&4}+\color{purple}1\vm{2&0\\3&0}\right) 
 +\\&=1(2(-4)-0-0)+2(-2(1)-0)-3(-2(8)+0) 
 +\\&=-8-4+48\\
 &=36. &=36.
 \end{align*} \end{align*}
- 
lecture_13_slides.1488821965.txt.gz · Last modified: by rupert

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki