User Tools

Site Tools


Plugin installed incorrectly. Rename plugin directory '_include' to 'include'.
Plugin installed incorrectly. Rename plugin directory '__include' to 'include'.
lecture_11_slides

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
lecture_11_slides [2017/02/27 12:09] – [Lemma] rupertlecture_11_slides [2017/02/27 12:35] (current) – [Proof] rupert
Line 122: Line 122:
 ==== Proof ==== ==== Proof ====
  
-  * Let $J=\mat{d&-b\\-c&a}$ and write $\delta=\det(A)$. +  * Let $J=\mat{d&-b\\-c&a}$, so $AJ=\det(A) I_2=JA$ (Lemma).
-  * By the previous lemma, $AJ=\delta I_2=JA$.+
  
-If $\delta\ne 0$: +If $\det(A)\ne 0$: 
-  * Multiply by $\frac1{\delta}$: $\quad A(\tfrac1{\delta}J)=I_2=(\tfrac1{\delta}J) A+  * Multiply by $\frac1{\det(A)}$: $\quad A(\tfrac1{\det(A)}J)=I_2=(\tfrac1{\det(A)}J) A$ 
-  * So $ AB=I_2=BA$, where $B=\tfrac1{\delta}J+  * So $A$ invertible with $A^{-1}=\frac1{\det(A)}J=\frac1{\det(A)}\mat{d&-b\\-c&a}$.
-  * So $A$ invertible with $A^{-1}=B=\frac1{\delta}J=\frac1{\det(A)}\mat{d&-b\\-c&a}$.+
  
-If $\delta=0$:+If $\det(A)=0$:
   * $AJ=0_{2\times 2}$   * $AJ=0_{2\times 2}$
-  * If $J=0_{2\times 2}$ then $A=0_{2\times 2}$ so $A$ isn't invertible +  * If $J\ne 0_{2\times 2}$ then (by corollary) $A$ isn't invertible 
-  * If $J\ne 0_{2\times 2}$ then by the previous corollary, $A$ isn't invertible.  ■  +  * If $J=0_{2\times 2}$ then $A=0_{2\times 2}$, which isn't invertible.■ 
 ==== Using the inverse to solve a matrix equation ==== ==== Using the inverse to solve a matrix equation ====
  
lecture_11_slides.1488197362.txt.gz · Last modified: by rupert

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki