User Tools

Site Tools


Plugin installed incorrectly. Rename plugin directory '_include' to 'include'.
Plugin installed incorrectly. Rename plugin directory '__include' to 'include'.
lecture_10_slides

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
lecture_10_slides [2016/02/29 19:08] rupertlecture_10_slides [2017/02/21 10:04] (current) rupert
Line 1: Line 1:
 ~~REVEAL~~ ~~REVEAL~~
  
-==== Last time ==== 
  
-{{page>the inverse}}+===== Matrix equations =====
  
-  * $\def\mat#1{\left[\begin{smallmatrix}#1\end{smallmatrix}\right]}A=\mat{2&4\\0&1}$ is invertible, and $A^{-1}=\mat{\tfrac12&-2\\0&1}$. +  * A linear equation can be written using [[row-column multiplication]].  
-    * i.e. $\mat{2&4\\0&1}^{-1}=\mat{\tfrac12&-2\\0&1}$ +  * e.g. $ \newcommand{\m}[1]{\left[\begin{smallmatrix}#1\end{smallmatrix}\right]} 2x-3y+z=8$ is same as $ \m{2&-3&1}\m{x\\y\\z}=8
-  * if $a$ is a non-zero scalar, then $[a]^{-1}=[\tfrac 1a]$ +  * or $ a\vec x=8where $a=\m{2&-3&1}$ and $\vec x=\m{x\\y\\z}$.
-  * $I_n^{-1}=I_nfor any $n$ +
-  * $0_{n\times n}^{-1}$, $\mat{1&0\\0&0}^{-1}$ and $\mat{1&2\\-3&-6}^{-1}$ **do not exist**  +
-    * because these matrices aren't invertible +
-==== Warning ====+
  
-If $A$, $B$ are matrices, then $\frac ABdoesn't make sense! +==== ==== 
 +  * We can write a whole [[system of linear equations]] in a similar wayas a matrix equation using [[matrix multiplication]].  
 +  * e.g. the linear system $\begin{align*} 2x-3y+z&=8\\ y-z&=4\\x+y+z&=0\end{align*}$
  
-  * Never write this down as it will almost always lead to mistakes. +  * is same as $\m{2&-3&1\\0&1&-1\\1&1&1}\m{x\\y\\z}=\m{8\\4\\0}$ 
-  * In particular, $A^{-1}$ definitely doesn't mean $\frac 1A$. Never write this either!+  * or $ A\vec x=\vec b$ where $A=\m{2&-3&1\\0&1&-1\\1&1&1}$$\vec x=\m{x\\y\\z}$ and $\vec b=\m{8\\4\\0}$. 
  
-==== Proposition: solving $AX=B$ when $A$ is invertible ====+==== ====
  
-If $A$ is an invertible $n\times n$ matrix and $B$ is an $n\times kmatrix, then AX=Bhas a unique solution: $X=A^{-1}B$.+In a similar way, any linear system \begin{align*} a_{11}x_1+a_{12}x_2+\dots+a_{1m}x_m&=b_1\\ a_{21}x_1+a_{22}x_2+\dots+a_{2m}x_m&=b_2\\ \hphantom{a_{11}}\vdots \hphantom{x_1+a_{22}}\vdots\hphantom{x_2+\dots+{}a_{nn}} \vdots\ & \hphantom{{}={}\!} \vdots\\ a_{n1}x_1+a_{n2}x_2+\dots+a_{nm}x_m&=b_n \end{align*} 
 +can be written in the form 
 +\[ A\vec x=\vec b\] 
 +where $A$ is the $n\times $ matrix, called the **coefficient matrix** of the linear system, whose $(i,j)entry is $a_{ij}(the number in front of $x_jin the $i$th equation of the system).
  
-=== Proof ===+==== Solutions of matrix equations ====
  
-  * First check that $X=A^{-1}B$ really is solution: +  * More generally, might want to solve matrix equation like \[AX=B\] where $A$, $X$ and $B$ are matrices of any size, with $A$ and $B$ fixed matrices and $Xa matrix of unknown variables
-    * $AX=A(A^{-1}B)=(AA^{-1})B=I_nB=B$ :-) +  * If $A$ is $n\times m$, we need $B$ to be $n\times k$ for some $k$, and then $X$ must be $m\times k$ 
-  * Uniqueness: suppose $X$ and $Y$ are both solutions +    * so we know the size of any solution $X$. 
-  * Then $AX=B$ and $AY=B$, so $AX=AY$. +  *  But which $m\times k$ matrices $X$ are solutions?
-  * Multiply both sides on the left by $A^{-1}$+
-    * $A^{-1}AX=A^{-1}AY$, or $I_nX=I_n Y$, or $X=Y$. +
-  * So any two solutions are equal.■+
  
-==== Corollary ====+==== Example ====
  
-If $A$ is an $n\times nmatrix and there is a non-zero $n\times m$ matrix $K$ so that $AK=0_{n\times m}$, then $Ais not invertible.+If $A=\m{1&0\\0&0}$ and $B=0_{2\times 3}$, then any solution $X$ to $AX=B$ must be $2\times 3$.
  
-=== Proof ===+  * One solution is $X=0_{2\times 3}$ 
 +    *  because then we have $AX=A0_{2\times 3}=0_{2\times 3}$. 
 +  * This is not the only solution! 
 +  * For example, $X=\m{0&0&0\\1&2&3}$ is another solution 
 +    * because then we have $AX=\m{1&0\\0&0}\m{0&0&0\\1&2&3}=\m{0&0&0\\0&0&0}=0_{2\times 3}.$
  
-  * $AX=0_{n\times m}$ has (at least) two solutions:  +  * So a matrix equation can have more than one solution.
-    * $X=K$,  +
-    * and $X=0_{n\times m}$  +
-  * If $A$ was invertible, this would contradict the Proposition.  +
-  * So $A$ cannot be invertible+
  
 ==== Example ==== ==== Example ====
  
-  * Let $A=\mat{1&2\\-3&-6}$. $A$ isn't invertible... why? +  * Let $A=\m{2&4\\0&1}$  
-  * One column of $Ais $2times the other... exploit this. +  * and $B=\m{3&4\\5&6}$ 
-  * Let $K=\mat{-2\\1}$  +  * Solve $AX=Bfor $X$ 
-  * $K$ is non-zero but $AK=\mat{1&2\\-3&-6}\mat{-2\\1}=\mat{0\\0}=0_{2\times 1}$ +   
-  * So $Ais not invertible, by the Corollary.+  * $X$ must be $2\times 2$ 
 +  * $X=\m{x_{11}&x_{12}\\x_{21}&x_{22}}$ 
 +  * Do some algebra to solve for $X$ 
 +  * ... 
 +  * Is there a quicker way? 
  
 ==== Example ==== ==== Example ====
  
-  * $A=\mat{1&4&5\\2&5&7\\3&6&9}$ is not invertible +  * Consider $AX=B$, where 
-    * $X=\mat{1\\1\\-1}$ is non-zero +    * $A=\def\m#1{\left[\begin{smallmatrix}#1\end{smallmatrix}\right]}\m{1&0\\0&0}$ 
-    and $AX=0_{3\times 1}$. +    * $B=0_{2\times 3}$, 
-===== $2\times 2matrices: determinants and invertibility =====+  * i.e. $\m{1&0\\0&0}X=\m{0&0&0\\0&0&0}$ 
 +  then any solution $X$ to $AX=B$ must be $2\times 3$. 
 +  * One solution is $X=0_{2\times 3}$ 
 +  * Are there any more? 
 +  * Yes! e.g. $X=\m{0&0&0\\1&2&3}$ 
 +  * So a matrix equation can have more than one solution.
  
-==== Question ====+===== Invertibility ======
  
-Which $2\times 2$ matrices are invertible? For the invertible matrices, can we find their inverse?+==== Example ====
  
 +  * Take $A=\def\mat#1{\m{#1}}\mat{2&4\\0&1}$ and $B=\mat{3&4\\5&6}$, consider $AX=B$
 +  * $\mat{2&4\\0&1}X=\mat{3&4\\5&6}$
 +  * $X$ must be $2\times 2$ matrix
 +  * One way to solve: write $X=\mat{x_{11}&x_{12}\\x_{21}&x_{22}}$ 
 +  * Plug in and do matrix multiplication: $\mat{2x_{11}+4x_{21}&2 x_{12}+4x_{22}\\x_{21}&x_{22}}=\mat{3&4\\5&6}$
 +  * Get four linear equations: $\begin{align*}2x_{11}+4x_{21}&=3\\2 x_{12}+4x_{22}&=4\\x_{21}&=5\\x_{22}&=6\end{align*}$
 +  * Can solve in the usual way....
 +  * Tedious! Can we do better?
  
-==== Lemma ====+==== Simpler: $1\times 1$ matrix equations ====
  
-If $A=\mat{a&b\\c&d}and $J=\mat{d&-b\\-c&a}$, then we have +  * Let $a,b$ be ordinary numbers ($1\times 1$ matrices) with $a\ne0$. How do we solve $ax=b$? 
-\[ AJ=\delta I_2=JA\] +  * Answer: multiply both sides by $a^{-1}$  
-where $\delta=ad-bc$.+    * (for numbers, $a^{-1}$ is same as $\tfrac1a$) 
 +  * Solution: $x=a^{-1}b$.
  
-  * Proof is a calculation!+  * Why does this work? 
 +  * If $x=\tfrac1a\cdot b$, then $ax=a(\tfrac1a\cdot b)=(a\cdot \tfrac1a)b=1b=b$ 
 +  * so $ax$ really is equal to $b$ 
 +  * We do have solution to $ax=b$.
  
-==== Definition: the determinant of a $2\times 2matrix ====+==== Thinking about $a^{-1}for $a$ a number ====
  
-{{page>determinant of 2x2 matrix}}+  * What is special about $a^{-1}$ which made this all work? 
 +  * Write $c=a^{-1}$
  
-==== Theorem: the determinant determines the invertibility (and inverse) of a $2\times 2matrix ====+  * $1b=b$, and $c = 1$ 
 +  * so x=cb$ has $ax=acb=1b=b$ :-)
  
-Let $A=\mat{a&b\\c&d}$ be a $2\times 2$ matrix.+==== What about matrices? ====
  
-  $A$ is invertible if and only if $\det(A)\ne0$. +  * Can we do something similar for an $n\times n$ matrix $A$
-  If $A$ is invertible, then $A^{-1}=\frac{1}{\det(A)}\mat{d&-b\\-c&a}$.+  * i.e. find a matrix $C$ with similar properties? 
 +    * Replace $1$ with $I_n$ 
 +    * Then $I_nB=B$  
 +    * So if we had a matrix $Cwith $CA=I_n$..
 +    * Then $X=CB$ would have $AX=ACB=I_nB=B$ :-
 +  * The key property of $C$ is that $AC=I_n$. 
 +  * Turns out we also want $CA=I_n$
  
-==== Proof ====+==== Example revisited ==== 
 +  * Let $A=\mat{2&4\\0&1}$ 
 +  * The matrix $C=\mat{\tfrac12&-2\\0&1}$ **does** have the property\[ C A =I_2= AC.\] 
 +  * Check this! 
 +  * Multiply both sides of $AX=B$ on the left by $C$ and use $CA=I_2$: 
 +  * Get $X=CB=\mat{\tfrac12&-2\\0&1}\mat{3&4\\5&6} = \mat{-8.5&-10\\5&6}$. 
 +  * This is quicker than solving lots of equations 
 +    * although we don't yet know how to **find** $C$ from $A$ 
 +  * Also, if we change $B$ we can easily find solutions to the new equation
  
-  * true for $A=0_{2\times 2}$! +==== Definitioninvertible ====
-  * Now suppose $A\ne0_{2\times 2}$. Let $J=\mat{d&-b\\-c&a}$.  +
-  * By the previous lemma, $AJ=(\det(A))I_2=JA$. +
-  * If $\det(A)\ne0$, multiply by $\frac1{\det(A)}$ and write $B=\tfrac1{\det(A)}J$\[ ABA(\tfrac1{\det(A)}J)=I_2=(\tfrac1{\det(A)}J) A=BA\] +
-  * So $ AB=I_2=BA$, so $A$ invertible with inverse $B=\frac1{\det(A)}J=\frac1{\det(A)}\mat{d&-b\\-c&a}$.+
  
-  * If $\det(A)=0$, then $AJ=0_{2\times 2}$  and $J\ne 0_{2\times2}$ [why?] +{{page>invertible}}
-  * Hence by the previous corollary, $A$ is not invertible in this case.  ■ +
  
-====== The transpose of a matrix ======+==== Examples ====
  
-We defined this in tutorial sheet 4:+  * $A=\mat{2&4\\0&1}$ is invertible, and $C=\mat{\tfrac12&-2\\0&1}$ is an inverse 
 +  * a $1\times 1$ matrix $A=[a]$ is invertible if and only if $a\ne0$, and if $a\ne0$ then an inverse of $A=[a]$ is $C=[\tfrac1a]$. 
 +  * $I_n$ is invertible for any $n$, with inverse $I_n$ 
 +  * $0_{n\times n}$ is not invertible for any $n$... why? 
 +  * $A=\mat{1&0\\0&0}$ is not invertible... why? 
 +  * $A=\mat{1&2\\-3&-6}$ is not invertible. We'll see why later!
  
-{{page>transpose}} +==== Propositionuniqueness of the inverse ==== 
-==== Exercisesimple properties of the transpose ==== +If $A$ is an invertible $n\times n$ matrix, then $A$ has a //unique// inverse.
-Prove that for any matrix $A$:+
  
-  * $(A^T)^T=A$; and +=== Proof === 
-  * $(A+B)^T=A^T+B^Tif $Aand $Bare matrices of the [[same size]]; and +  * $A$ invertible, so $A$ has at least one inverse. 
-  * $(cA)^T=c(A^T)$ for any [[scalar]] $c$. +  * Suppose it has two inverses, say $Cand $D$
-   +  * Then $AC=I_n=CA$ and $AD=I_n=DA$. 
-In tutorial sheet 4, we proved:+  * So $C=CI_n=C(AD)=(CA)D=I_nD=D$ 
 +  * So $C=D$. 
 +  * So any two inverses of $A$ are equal. 
 +  * So $A$ has a unique inverse.■
  
-==== Lemmatransposes and row-column multiplication ====+==== Definition/notation$A^{-1}$ ====
  
-If $a$ is a $1\times m$ row vector and $b$ is an $m\times 1$ column vector, then +{{page>the inverse}}
-\[ ab=b^Ta^T.\]+
  
 +==== Examples again ====
  
 +  * $A=\mat{2&4\\0&1}$ is invertible, and $A^{-1}=\mat{\tfrac12&-2\\0&1}$.
 +    * i.e. $\mat{2&4\\0&1}^{-1}=\mat{\tfrac12&-2\\0&1}$
 +  * if $a$ is a non-zero scalar, then $[a]^{-1}=[\tfrac 1a]$
 +  * $I_n^{-1}=I_n$ for any $n$
 +  * $0_{n\times n}^{-1}$, $\mat{1&0\\0&0}^{-1}$ and $\mat{1&2\\-3&-6}^{-1}$ **do not exist** 
 +    * because these matrices aren't invertible
 +==== Warning ====
  
-==== Examples ====+If $A$, $B$ are matrices, then $\frac AB$ doesn't make sense! 
  
-  * $\det\mat{2&3\\-4&-6}=2(-6)-3(-4)=-12-(-12)=0$ +  * Never write this down as it will almost always lead to mistakes
-    *  so $\mat{2&3\\-4&-6}$ is not invertible+  * In particular, $A^{-1}$ definitely doesn't mean $\frac 1A$. Never write this either!
-  * $\det\mat{2&3\\-4&5}=2(5)-3(-4)=10-(-12)=22\ne0$ +
-    * so $\mat{2&3\\-4&5}is invertible  +
-    * with inverse \[\mat{2&3\\-4&5}^{-1}=\frac1{22}\mat{5&-3\\4&2} = \mat{\frac 5{22}&-\frac3{22}\\\frac2{11}&\frac1{11}}.\]+
  
 +==== Proposition: solving $AX=B$ when $A$ is invertible ====
  
-==== Observationthe transpose swaps rows with columns ====+If $A$ is an invertible $n\times n$ matrix and $B$ is an $n\times k$ matrix, then $ AX=B$ has a unique solution$X=A^{-1}B$.
  
-Formally, for any matrix $A$ and any $i,j$, we have +=== Proof ===
-\begin{align*}\def\col#1{\text{col}_{#1}}\def\row#1{\text{row}_{#1}} +
-\row i(A^T)&=\col i(A)^T\\\col j(A^T)&=\row j(A)^T +
-.\end{align*}+
  
-==== Theorem: the transpose reverses the order of matrix multiplication ====+  * First check that $X=A^{-1}B$ really is a solution: 
 +    * $AX=A(A^{-1}B)=(AA^{-1})B=I_nB=B$ :-) 
 +  * Uniqueness: suppose $X$ and $Y$ are both solutions 
 +  * Then $AX=B$ and $AY=B$, so $AX=AY$. 
 +  * Multiply both sides on the left by $A^{-1}$: 
 +    * $A^{-1}AX=A^{-1}AY$, or $I_nX=I_n Y$, or $X=Y$. 
 +  * So any two solutions are equal. 
 +  * So $AX=B$ has a unique solution.■
  
-If $A$ and $Bare matrices and the [[matrix product]] $ABis defined, then $B^TA^T$ is also definedMoreover, in this case we have +==== Corollary ==== 
-\[ (AB)^T=B^TA^T.\]+ 
 +If $A$ is an $n\times nmatrix and there is a non-zero $n\times m$ matrix $K$ so that $AK=0_{n\times m}$, then $A$ is not invertible.
  
 === Proof === === Proof ===
  
-If $AB$ is defined, then $A$ is $n\times m$ and $Bis $m\times k$ for some $n,m,k$, so $B^T$ is $k\times m$ and $A^T$ is $m\times n$, so $B^TA^Tis definedMoreover, in this case $B^TA^Tis an $k\times nmatrix, and $AB$ is an $n\times kmatrix, so $(AB)^T$ is a $k\times n$ matrix. Hence $B^TA^T$ has the same size as $(AB)^T$To show that they are equal, we calculate, using the fact that the transpose swaps rows with columns: +  * $AX=0_{n\times m}has (at least) two solutions:  
-\begin{align*+    * $X=K$,  
-\text{the }(i,j)\text{ entry of }(AB)^T&= \text{the }(j,i)\text{ entry of }AB +    * and $X=0_{n\times m} 
-\\&= \row j(A)\cdot\col i(B) +  * If $A$ was invertiblethis would contradict the Proposition.  
-\\&=\col i(B)^T\cdot \row j(A)^T \quad\text{by the previous Lemma} +  * So $Acannot be invertible■ 
-\\&=\row i(B^T)\cdot \col j(A^T) \quad\text{by the Observation} + 
-\\&=\text{the }(i,j)\text{ entry of }B^TA^T +==== Example ==== 
-\end{align*+ 
-Hence $(AB)^T=B^TA^T$. ■ +  * Let $A=\mat{1&2\\-3&-6}$$Aisn't invertible... why? 
 +  * One column of $A$ is $2$ times the other... exploit this
 +  Let $K=\mat{-2\\1}$  
 +  * $K$ is non-zero but $AK=\mat{1&2\\-3&-6}\mat{-2\\1}=\mat{0\\0}=0_{2\times 1}$ 
 +  So $Ais not invertible, by the Corollary.
  
 +  * Next time: a more systematic way to determine when a matrix is invertible: **determinants**
lecture_10_slides.1456772920.txt.gz · Last modified: by rupert

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki