User Tools

Site Tools


Plugin installed incorrectly. Rename plugin directory '_include' to 'include'.
Plugin installed incorrectly. Rename plugin directory '__include' to 'include'.
lecture_10_slides

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
lecture_10_slides [2016/02/24 16:53] – [Example] rupertlecture_10_slides [2017/02/21 10:04] (current) rupert
Line 1: Line 1:
 ~~REVEAL~~ ~~REVEAL~~
  
-==== Last time ==== 
  
-  $A\vec{x}=\vec{b}$ is equivalent to a system of linear equations +===== Matrix equations ===== 
-  * More generally, we might want to solve \[AX=B\] where + 
-    * $A$, $B$ are fixed matrices +  * A linear equation can be written using [[row-column multiplication]].  
-    * $X$ is an unknown matrix we want to find. +  * e.g. $ \newcommand{\m}[1]{\left[\begin{smallmatrix}#1\end{smallmatrix}\right]} 2x-3y+z=8$ is same as $ \m{2&-3&1}\m{x\\y\\z}=8$ 
-  Can figure out the size of $X$ from the size of $A$ and $B$ +  * or $ a\vec x=8$ where $a=\m{2&-3&1}$ and $\vec x=\m{x\\y\\z}$. 
-  * To solve: find the matrices $X$. How? + 
-  * Can't "divide by $A$" (can't divide by a matrix...)+==== ==== 
 +  * We can write a whole [[system of linear equations]] in a similar way, as a matrix equation using [[matrix multiplication]].  
 +  * e.g. the linear system $\begin{align*} 2x-3y+z&=8\\ y-z&=4\\x+y+z&=0\end{align*}$ 
 + 
 +  * is same as $\m{2&-3&1\\0&1&-1\\1&1&1}\m{x\\y\\z}=\m{8\\4\\0}$ 
 +  * or $ A\vec x=\vec b$ where $A=\m{2&-3&1\\0&1&-1\\1&1&1}$, $\vec x=\m{x\\y\\z}$ and $\vec b=\m{8\\4\\0}$.  
 + 
 +==== ==== 
 + 
 +In similar way, any linear system \begin{align*} a_{11}x_1+a_{12}x_2+\dots+a_{1m}x_m&=b_1\\ a_{21}x_1+a_{22}x_2+\dots+a_{2m}x_m&=b_2\\ \hphantom{a_{11}}\vdots \hphantom{x_1+a_{22}}\vdots\hphantom{x_2+\dots+{}a_{nn}} \vdots\ & \hphantom{{}={}\!} \vdots\\ a_{n1}x_1+a_{n2}x_2+\dots+a_{nm}x_m&=b_n \end{align*} 
 +can be written in the form 
 +\[ A\vec x=\vec b\] 
 +where $A$ is the $n\times m $ matrix, called the **coefficient matrix** of the linear system, whose $(i,j)$ entry is $a_{ij}$ (the number in front of $x_j$ in the $i$th equation of the system). 
 + 
 +==== Solutions of matrix equations ==== 
 + 
 +  * More generally, might want to solve a matrix equation like \[AX=B\] where $A$, $X$ and $B$ are matrices of any size, with $A$ and $B$ fixed matrices and $X$ a matrix of unknown variables. 
 +  If $A$ is $n\times m$, we need $B$ to be $n\times k$ for some $k$, and then $X$ must be $m\times k$ 
 +    so we know the size of any solution $X$
 +  *  But which $m\times k$ matrices $X$ are solutions? 
 + 
 +==== Example ==== 
 + 
 +If $A=\m{1&0\\0&0}$ and $B=0_{2\times 3}$, then any solution $X$ to $AX=B$ must be $2\times 3$. 
 + 
 +  * One solution is $X=0_{2\times 3}$ 
 +    *  because then we have $AX=A0_{2\times 3}=0_{2\times 3}$. 
 +  * This is not the only solution! 
 +  * For example, $X=\m{0&0&0\\1&2&3}is another solution 
 +    * because then we have $AX=\m{1&0\\0&0}\m{0&0&0\\1&2&3}=\m{0&0&0\\0&0&0}=0_{2\times 3}.$ 
 + 
 +  * So a matrix equation can have more than one solution. 
 + 
 +==== Example ==== 
 + 
 +  * Let $A=\m{2&4\\0&1}$  
 +  * and $B=\m{3&4\\5&6}$ 
 +  * Solve $AX=B$ for $X$ 
 +   
 +  * $X$ must be $2\times 2$ 
 +  * $X=\m{x_{11}&x_{12}\\x_{21}&x_{22}}$ 
 +  * Do some algebra to solve for $X$ 
 +  * ..
 +  * Is there a quicker way? 
  
 ==== Example ==== ==== Example ====
lecture_10_slides.1456332813.txt.gz · Last modified: by rupert

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki