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3 Euler Circuits and Hamilton Cycles

An Euler circuit in a graph is a circuit which includes each edge exactly once. An
Euler trail is a walk which contains each edge exactly once, i.e., a trail which includes
every edge. A Hamilton cycle is a cycle in a graph which contains each vertex exactly
once. A connected graph is called Hamiltonian is it contains a Hamilton cycle. There
is a simple condition on the degree numbers of a connected graph which allows one to
decide whether the graph can be expressed as an Euler circuit. In general, the problem
of determining whether a graph is Hamiltonian is more difficult.

Definition 3.1 A multigraph is a pair G = (V, E), where V is the vertex set and E
is the edge set which allows more than one edge between each pair x 6= y ∈ V . A loop

is a an edge connecting a single vertex with itself. A pseudograph is a multigraph with
loops. A directed graph is a graph in which the vertices are ordered pairs (x, y) with
x 6= y ∈ V . A directed graph can have the two distinct edges (x, y) and (y, x). A directed

multigraph allows multiple copies of directed edges.

These terms are not employed uniformly in the literature. Some authors allow multi-
graphs and directed multigraphs to have loops. The degree of a vertex and the degree
sequence apply to multigraphs. If the edge {x, y}, x 6= y, appears m times, then these
make the contribution of m to the the degree of vertex x and m to that of y. If the pseu-
dograph has k loops at x, these contribute 2k to the degree of x. In the case of directed
(multi-)graphs, each vertex x has an out-degree d+(x) and an in-degree d−(x). The
edge (x, y) contributes 1 to the out-degree of x and 1 to the in-degree of y. Each loop
(x, x) contributes 1 to each of the in- and out-degrees of x.

Theorem 3.1 A connected pseudograph has a Euler circuit if, and only if, the degree of
each vertex is even. It has an Euler trail, if, and only if, the degree sequence has exactly
2 odd entries.

The graph corresponding to Euler’s Königsberg is given by G. The town is now called
Kaliningrad. The original bridges were destroyed in war. The rebuilt bridge structure is
given in G′ below. The degree of G is 3, 3, 3, 5; that of G′, 2, 2, 3, 3. By the theorem G′

has an Euler trail; G has neither Euler circuit nor Euler trail.
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Proof: That the degree of each vertex must be even in the case of an Euler circuit follows
from the fact that along the circuit as a vertex is passed the incoming edge contributes
1 to the degree and the outgoing edge another 1 to add 2 to the degree for each time the
circuit passes this vertex.



Graph Theory: version: 26 February 2007 10

For the converse assume that the graph is connected and that the degree of each vertex
is even. Note that loops may be added to a circuit, so we consider a multigraph without
loops. We proceed by induction on the number of vertices. If there are only 2 vertices,
they must be connected by an even multiple of the edge between then from which an
Euler circuit is easily made. Now we assume the result to be valid for graphs of order k
for all 2 ≤ k ≤ n (at this stage we only know that this works for n = 2). Now if there
are n + 1 vertices, select a fixed vertex which we call x0 of G. Now d(x0) ≥ 2 because the
graph is connected and the degree numbers are all even. Choose one edge from x0, say
{x0, x1}, and let G1 := G \ {x0, x1}. Continue in this fashion until a vertex is reached,
say xm so that Gm := G \ {{x0, x1}, . . . , {xm−1, xm}} has no edges containing xm. We
claim x0 = xm, because if xm 6= x0, there are an odd number of edges in x0x1 · · · xm

which contain xm: strictly between x0 and xm pairs of edges share a common vertex. If
there are no more edges in Gm adjacent to xm and xm 6= x0, then xm has odd degree in
G. The assumption of d(x) even thus implies that x0x1 · · · xm is a circuit. Unless Gm has
no edges, this is not an Euler circuit for G. The vertices of Gm all have even degree and
Gm has at least one isolated vertex x0. Each of the components of Gm which is not an
isolated vertex is a connected multigraph of order n or less whose degree sequence has
only even entries. We apply the induction hypothesis to get an Euler circuit for each. It
is not difficult to splice these circuits into x0x1 · · · xm to get an Euler circuit for G.

For the case of exactly two odd vertices, add an edge between these vertices to get an
even degree sequence. The Euler circuit for this graph with the new edge removed is an
Euler trail for the original graph.

The corresponding result for directed multigraphs is

Theorem 3.2 A connected directed multigraph has a Euler circuit if, and only if, d+(x) =
d−(x). It has an Euler trail if, and only if, there are exactly two vertices with d+(x) 6=
d−(x), one with d+(x) = d−(x) + 1 and one with d+(x) = d−(x) − 1.

3.1 Hamilton Cycles

The above criteria completely characterize graphs with Euler circuits or trails. Now
we consider the harder problem of deciding whether a graph has a Hamilton cycle: a
connected subgraph which includes all the vertices and has degree 2 at each vertex.
Clearly a Hamiltonian graph has no leaves. The simplest Hamiltonian graph is Cn, the
cycle of order n, n > 2. Also Kn, n > 2, has a Hamilton cycle because it contains Cn.
We consider two other graphs, which show that it is not always easy to see whether or
not a graph is Hamiltonian.
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The graph to the left above we call the double pentagon. The one on the right is called the
Petersen graph. Both share the same degree sequence. However, the double pentagon is
Hamiltonian, while Petersen’s graph is not. A Hamilton path in either graph starting on
the outside pentagon must finish on the outside pentagon, which means that it includes
an even number of the edges joining the inner figure to the outer. Assume that four of the
inner-to-outer edges are used, leaving the Aa edge omitted. Then the two outer edges at
A and the two inner edges at a must be in the cycle. In the double pentagon this yields
a cycle already, so a Hamilton cycle of the double pentagon cannot include four inner-to-
outer edges. In the Petersen graph the two outer edges at A, plus the two inner edges at
a plus the four inner-to-outer edges (excluding Aa) yield two disjoint paths, each with 5
vertices. There are no edges left in the graph which can join these two paths to make a
cycle. Thus neither graph has a Hamilton cycle with 4 inner-to-outer edges. A Hamilton
path of the double pentagon is achieved by traversing 4 of the 5 outer edges, taking a
edge to the inner pentagon, which is traversed in the reverse direction, the path then
returning to the outside start. Now we attempt a Hamilton cycle for Petersen’s graph
using exactly two inner-to-outer edges. We start with aA, one of the two inner-to-outer
edges. Then we must include all of the outer edges before returning to the inner figure.
We can get back to a via 2 edges or 3 edges, but we cannot include all the inner vertices
in a cycle. This shows that double pentagon is Hamiltonian, while Petersen’s graph is
not.

We now consider partial results concerning Hamiltonian graphs. Recall that for G =
(V, E) and S ⊂ V , G \ S means the graph with vertex set V \ S and edges set consisting
of all edges in E both of whose endpoints are in V \ S.

Proposition 3.1 If G is Hamiltonian and x ∈ V (G), then G \ {x} is connected.

Proof: If one omits a vertex from a cycle, a path remains.

A more general version is the following.

Theorem 3.3 If G = (V, E) is Hamiltonian and S ⊂ V , then G \ S has not more than
|S| components.

Proof: If G is Hamiltonian, let G′ ⊂ G be a Hamilton cycle. It suffices to prove the result
for G′, since adding edges does not increase the number of components. The conclusion
corresponds to the fact that if n items are chained together to form a loop, the removal
of k items and the chains connecting them, yields at most k pieces. One can remove
the items one at a time. The first removed yields an open connected chain, which is
a path of the graph. If an item is removed from the end of the chain, the number of
components remains the same. If an isolated item is removed, the number of components
of the remaining graph is reduced by one. If an item is removed from the interior of 3
or more linked items, the number of components is increased by 1. In no case can the
number of components be made greater than the number of items removed.

The above gives a necessary condition for a graph to be Hamiltonian, but it does not
suffice. The Petersen graph has the component property of the theorem but is not Hamil-
tonian. On the other hand, if one can show that a graph does not have the component
property of the theorem, the graph cannot be Hamiltonian.
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In the graph above the removal of the 4 vertices ABCD yields a graph with 5 components,
so the original graph has no Hamilton cycle.

We now present results which show that if a graph has enough vertices, then it must be
Hamiltonian. Recall that ΓG(x) denotes {y ∈ V (G) : {x, y} ∈ E}.

Lemma 3.1 Assume that for G = (V, E) the vertices x 6= y are not adjacent, i.e.,
y /∈ ΓG(x), and there exists a path x = x1x2 · · · xm = y and i, 2 < i < m so that
xi−1 ∈ ΓG(y), while xi ∈ ΓG(x). Then there exists an m-cycle which includes x and y.

Proof: Since x = x1x2 · · · xm = y is a path, it includes m distinct vertices. By hypothesis
{y, xi−1} ∈ E and {x, xi} ∈ E so xxixi+1 · · · xm−1yxi−1xi−2 · · · x2x is the required m-cycle.

• • • • • • • • • •
x x2 xm−1 y

xi−1

xi xi+1

xi−2

For G = (V, E) and {x, y} /∈ E, the notation G + {x, y} means the graph with vertex set
V and edge set E ∪ {x, y}.

Theorem 3.4 (Bondy and Chvátal, 1976) Let G = (V, E) be a graph of order n in which
x 6= y ∈ V and {x, y} /∈ E and d(x) + d(y) ≥ n, Then G is Hamiltonian if, and only if,
G + {x, y} is.

Proof: A Hamilton cycle in G is a Hamilton cycle in G + {x, y}, which proves the “if”
part. Assume that G + {x, y} has a Hamilton cycle. If this does not include {x, y}, then
it is a Hamilton cycle in G. Assume the Hamilton cycle includes {x, y}, which we write
as x = x1x2 · · · xnx1, y = xn. Now the d(x) vertices adjacent to x appear in x2, . . . , xn−1.
If xi ∈ Γ(x) and xi−1 ∈ Γ(y), we may invoke the lemma above to obtain the required
Hamilton cycle which does not use {x, y}. The number of vertices not adjacent to or
equal to y is k = n− d(y)− 1. Unless k ≥ d(x), there must be the pair {xi−1, xi} as used
in the lemma. For this to be the case k = n − d(y) − 1 ≥ d(x) ⇒ d(x) + d(y) ≤ n − 1.
By hypothesis d(x) + d(y) ≥ n so there is a pair {xi−1, xi} as required by the lemma, so
there exists a Hamilton cycle in G.

Definition 3.2 The closure C(G) of the graph G = (V, E) is the graph with vertex
set V obtained by successively adding edges {x, y} not in the current graph which have
d(x) + d(y) ≥ n, where d’s are calculated for the current graph.

Lemma 3.2 Regardless of the order in which edges satisfying the d(x) + d(y) ≥ n are
appended, the resulting closure C(G) is uniquely defined.
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Proof: Let G1 and G2 be graphs obtained by successively adding edges, which in the
current graph satisfy d(x) + d(y) ≥ n, until no more edges remain which satisfy the
condition. If G1 6= G2, assume G1 contains an edge which is not in G2. Let e1, e2, . . . , em

be the edges in order which were added to G to produce G1. Let ek = {xk, yk} be the
first of these which is not in G2. This implies that e1, e2, . . . , ek−1 are in G2. Since adding
additional vertices does not decrease d(x), it follows that dG2

(xk) + dG2
(yk) ≥ n. This

means that ek can be appended to G2 to get a graph with more edges. This contradicts
the construction of G2, so G1 = G2.

Note: the Petersen graph has order 10 and each vertex has degree 3. Since 3 + 3 < 10,
there are no vertices to be appended, so the Petersen graph is its own closure. Below we
illustrate the closure process.
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For G, (d(A), d(B), d(C), d(D), d(E), d(F )) = (2, 3, 3, 2, 3, 3). First we add BF, EC to
get (2, 4, 4, 2, 4, 4). Then AC, AF, BD, DE to get (4, 5, 5, 4, 5, 5) and finally AD to get
(5, 5, 5, 5, 5, 5) = K6.

Corollary 3.1 If G is of order n > 2 and C(G) = Kn, then G is Hamiltonian.

Theorem 3.5 (Dirac, 1952) Let G be a graph of order n > 2 in which each vertex
satisfies d(x) ≥ n/2. Then G is Hamiltonian.

Theorem 3.6 (Ore, 1960) Let G be a graph of order n > 2 in which satisfies d(x) +
d(y) ≥ n whenever the distinct vertices x, y are not adjacent. Then G is Hamiltonian.

The above are special cases of the Theorem of Bondy and Chvátal. We consider a more
general result due to Chvátal. First we need a lemma about degree sequences.

Lemma 3.3 Let |V | = n and let d : V → R and d′ : V → R satisfy d(x) ≤ d′(x) for
each x ∈ V . Let d1, . . . , dn and d′

1, . . . , d
′

n be the values taken on by d and d′ written in
increasing order di−1 ≤ di, d′

i−1 ≤ d′

i, for i = 2, . . . , n. Then di ≤ d′

i for i = 1, . . . , n.

Proof: Let d′

k = d′(x), for fixed k, 1 ≤ k ≤ n. Then there are at least k vertices y with
d′(y) ≤ d′(x). For these vertices d(y) ≤ d′(y) ≤ d′(x). Hence dk ≤ d′

k = d′(x).

Theorem 3.7 Let G = (V, E) be a graph of order n > 2 and let d1 ≤ d2 ≤ · · · dn be the
degree sequence. If for each i, 1 ≤ i ≤ n/2, at least one of the following is true

Chvátal’s condition:

{

(a) di > i;

(b) dn−i ≥ n − i.

Then C(G) = Kn and G is Hamiltonian.
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Proof: Chvátal’s condition can be expressed as follows: for each k with k ≤ n/2 and
dk ≤ k we must have dn−k ≥ n − k.

Let {di} and {d′

i} be the degree sequences respectively in G and C(G). By the lemma
di ≤ d′

i, i = 1, . . . , n. If C(G) 6= Kn, choose x, y so that {x, y} /∈ E(C(G)) and d′(x)+d′(y)
is maximal. Since C(G) is a closure, d′(x) + d′(y) ≤ n − 1. Let d′(x) ≤ d′(y) so that
d′(x) < n/2. Set k := d′(x). The goal is to show that Chvátal’s condition fails for k.

Let M(x) and M(y) denote the vertices in C(G) which are not adjacent to x and not
adjacent to y respectively. We have |M(x)| = n − 1 − d′(x), |M(y)| = n − 1 − d′(y).
From d′(x) + d′(y) ≤ n − 1 follow |M(x)| ≥ d′(y) and |M(y)| ≥ d′(x) = k. The fact
that d′(x) + d′(y) is maximal for nonadjacent vertices implies that there are at least
|M(y)| ≥ d′(x) = k vertices w with d′(w) ≤ d′(x), hence d′

k ≤ k = d′(x). Similarly
w ∈ M(x) ∪ {x} implies d′(w) ≤ d′(y) ≤ n − 1 − d′(x), so that there are at least
n − 1 − d′(x) + 1 vertices w with d′(w) ≤ n − 1 − k, so d′

n−k ≤ n − k − 1. The choice
of d′(x) ≤ d′(y) yields an extra w, i.e., w = x, in addition to M(x) with d′(w) ≤ d′(y).
This shows that Chvátal’s condition fails for k = d′(x).

Here we introduce a concept that provides useful examples.

Definition 3.3 The graph G = (V, E) is bipartite if V = V1∪V2 where V1∩V2 = ∅ and
each edge has one endpoint in V1 and the other endpoint in V2. The complete bipartite
graph Km,n consists of V = V1 ∪ V2 with V1 ∩ V2 = ∅ and |V1| = m, |V2| = n and edge set
E = {{x, y} : x ∈ V1, y ∈ V2}.
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The Bipartite Graphs K3,3, K4,3 and K4,4

Note that K4,4 is the only one of the above with an Euler circuit. Notice also that the
closures of K3,3 and K4,4 are the corresponding complete graphs, so they are Hamiltonian.
However K4,3 is not Hamiltonian, as is the case for any Km,n with m 6= n. Any cycle in
a bipartite graph must the same number of points from V1 as from V2. An alternative
way to show that Km,n is not Hamiltonian is Theorem 3.3. For m < n, removing the m
V1 vertices leaves n isolated V2 vertices. Since the number of remaining components n
exceeds m, the theorem excludes a Hamilton cycle.


