Example
Suppose we have a 6 month European call option with $K = \€ 21$. Suppose $S_0 = \€ 20$ and in two time steps of 3 months the stock can go up or down by 10% ($u = 1.1$, $d = 0.9$). Let $r = 0.12$.

We want to calculate the value f of the option at node A. We can do this by working back to A in several steps.
We can calculate the value of the option at node B by using the result we found for the one-step binomial tree.

Using the formulas

$$f = e^{-rT} \left[pf_u + (1 - p)f_d \right],$$

$$p = \frac{e^{rT} - d}{u - d},$$

we find the price of the option at node B

$$p = (e^{-0.12 \cdot 0.25} - 0.9) / 0.2 = 0.6523,$$

$$f = e^{-0.12 \cdot 0.25} \left[0.6523 \cdot 3.2 + 0.3477 \cdot 0 \right] = 2.0257.$$
Similarly, we can compute the value of the option at node C from the values at the nodes E and F.

We find $f = 0,$ since the value at both the nodes E and F is 0.
Finally, we compute the value of the option at node A from the values at the nodes B and C.

\[
p = 0.6523, \\
f = e^{-0.12 \cdot 0.25} \left[0.6523 \cdot 2.0257 + 0.3477 \cdot 0 \right] = 1.2823. \\
\]

Hence the value of the option today is €1.2823.
The general case

We assume that the current stock price is S_0 and that it can go up by a factor of u or down by a factor of d during each time step δt years. Assume that the risk-free rate is r.

$$
\begin{align*}
&\text{uS}_0 &\quad \text{udS}_0 &\quad \text{S}_0 \\
&\quad \text{uuS}_0 &\quad \text{dS}_0 &\quad \text{ddS}_0
\end{align*}
$$

5 / 19
Using the formulas for the one-step binomial tree, we find

\[f_u = e^{-r\delta t} \left[pf_{uu} + (1 - p)f_{ud} \right] \]
\[f_d = e^{-r\delta t} \left[pf_{ud} + (1 - p)f_{dd} \right] \]
\[f = e^{-r\delta t} \left[pf_u + (1 - p)f_d \right] \]

all with

\[p = \frac{e^{r\delta t} - d}{u - d}. \]

If we substitute the first two results into the third, we find

\[f = e^{-2r\delta t} \left[p^2 f_{uu} + 2p(1 - p)f_{ud} + (1 - p)^2 f_{dd} \right]. \]
Theorem

Assume that the stock price \(S_0 \) goes either up or down by a factor \(u > 1 \) and \(d < 1 \) resp. in the time steps \(\delta t \). Let \(f_{uu} \) and \(f_{ud} \) and \(f_{dd} \) the payoffs of the option at maturity time \(T = 2\delta t \) in the different cases of stock movements. Let \(r \) be the riskless interest rate. Then the price \(f \) of the european option is

\[
f = e^{-2r\delta t} \left[p^2 f_{uu} + 2p(1 - p)f_{ud} + (1 - p)^2 f_{dd} \right].
\]

where

\[
p = \frac{e^{r\delta t} - d}{u - d}.
\]
An example with puts

Suppose we have a 2 year European put with $K = € 52$ and $S_0 = € 50$.
Suppose we have 2 time steps each of 1 year, in which the stock goes up or down by 20%, so $u = 1.2$ and $d = 0.8$.
Suppose $r = 0.05$.

![Diagram of a binomial lattice for pricing a European put option with inputs A, B, C, D, E, F and node values 50, 60, 40, 32, 48, 72. The lattice shows the possible stock prices at each time step with up and down factors p and 1-p, and the probabilities of each outcome.]
We get

\[p = \frac{e^{r \delta t} - d}{u - d} = \frac{e^{0.05 \cdot 1} - 0.8}{1.2 - 0.8} = 0.6282, \]

and

\[f_{uu} = 0, \]
\[f_{ud} = 4, \]
\[f_{dd} = 20, \]

and so

\[f = e^{-2r \delta t} \left[p^2 f_{uu} + 2p(1 - p)f_{ud} + (1 - p)^2 f_{dd} \right] = 4.1923. \]
An American put option

As an example we consider the same example as before, but now we assume we have an American put option.

Let now F be the price of the American put option. Then the terminal payoffs are the same, i.e. that $F_{uu} = f_{uu}$ and $F_{ud} = f_{ud}$ and $F_{dd} = f_{dd}$. The strategy is as before: compute the payoffs at the previous nodes.
At node B we compute the value f_u using that $p = 0.6282$

\[
f_u = e^{-r\delta t} \left[pf_{uu} + (1 - p)f_{ud} \right] \\
= e^{-0.05} \left[0.6282 \cdot 0 + 0.3718 \cdot 4 \right] = 1.4147.
\]

In contrast to the European option we have now the right to exercise the option. Thus we have to compute the payoff: in the case $S_T > K$ it is not interesting to exercise the option (we have the right to sell the option for the strike price K), so we conclude that the payoff of the American option F_u is equal to f_u.

At node C we have

\[
f_d = e^{-r\delta t} \left[pf_{ud} + (1 - p)f_{dd} \right] \\
= e^{-0.05} \left[0.6282 \cdot 4 + 0.3718 \cdot 20 \right] = 9.436.
\]

Now we have the right to sell the option at the node C for the strike price of 52 Euros, so the payoff is $52 - 40 = 12$ which is higher than the price of the option at this time of 9.436 Euro. So the value of the American option at node C, denoted by F_d, is now 12 and not 9.436.
At node A we have the formula

\[
f = e^{-r\delta t} \left[pF_u + (1 - p)F_d \right]
\]

\[
e^{-0.05} \left[0.6282 \cdot 1.4147 + 0.3718 \cdot 12 \right]
\]

\[
= 5.0894.
\]

Pay off from early exercise at this node is 2 which is less than \(f = 5.0894 \). Thus \(F \) is equal to \(f = 5.0894 \) and the value of the option today is \(\varepsilon 5.0894 \).
American options

For European options we have a general formula for the two-step binomial tree.

For American options we can’t use it directly; but we can still use the binomial tree model.

The difference with European options is that we have to check at every node how big the payoff is: if it is better to exercise the option at the node we have to change the value of the option at the node.
Multiple-step binomial trees

So far we have seen one-step and two-step binomial trees.

The results for European option are

\[f = e^{-r\delta t} \left[pf_u + (1 - p)f_d \right] \]

for one-step, and

\[f = e^{-2r\delta t} \left[p^2 f_{uu} + 2p(1 - p)f_{ud} + (1 - p)^2 f_{dd} \right] \]

for two-step, both with

\[p = \frac{e^{r\delta t} - d}{u - d}, \]

where \(\delta t \) is the length of one step.
If we continue adding more steps, we find

\[f = e^{-3r\delta t} \left[p^3 f_{uuu} + 3p^2(1-p)f_{uud} + 3p(1-p)^2f_{udd} + (1-p)^3f_{ddd} \right] \]

for three-step, and for \(n \) steps, all of length \(\delta t \)

\[f = e^{-nr\delta t} \sum_{k=0}^{n} \binom{n}{k} p^{n-k}(1-p)^k f_{u^{n-k}d^k}, \]

again with

\[p = \frac{e^{r\delta t} - d}{u - d}, \]

for European options.

Here \(f_{u^{n-k}d^k} \) means \(f \) with as index \((n-k)\) \(u \)'s and \(k \) \(d \)'s.
Some remarks

- The binomial model with just one or two steps is unrealistically simple. However, if we take a larger number of steps, say more than 30 steps, we can actually get a reasonable model.
- Traders use software for the calculations (strong advantage in comparison to students in MST30030), see Hull, p. 255.
- The most delicate point in the procedure is the assumption that we know only certain values of the stocks at time T will occur. The price of the option will depend on the choice.
- Later we shall see that the so-called volatility σ of a stock price per year is a basic ingredient of the price of an option. Cox, Ross and Rubenstein proposed in 1979

$$u = e^{\sigma \sqrt{\delta t}}, \text{ and } d = e^{-\sigma \sqrt{\delta t}}.$$

where δt is the step length of the binomial tree.
Delta hedging

Recall the example we started our discussion of binomial trees with: a European call option, with strike price $K = € 21$.

We considered a portfolio of long Δ shares and short one option. We then found

$$\Delta = \frac{1 - 0}{22 - 18} = \frac{“\text{difference” in price of option}}{“\text{difference” in price of stock”}}.$$

Δ is the number of shares we should have with one shorted option in order to maintain a riskless portfolio.

The construction of such a riskless hedge is referred to as delta hedging.
Recall another example we considered: again a European call option, with strike price \(K = \€ 21 \).

In the first time step

\[
\Delta = \frac{2.0257 - 0}{22 - 18} = 0.5064.
\]
In the second timestep, we find

\[\Delta_u = \frac{3.2 - 0}{24.2 - 19.8} = 0.7273 \]

\[\Delta_d = \frac{0 - 0}{19.8 - 16.2} = 0. \]

We see that in order to maintain a riskless hedge using an option and the stock, the holdings in the stock need to be adjusted at each time step.