Lecture 16: Delta Hedging

We are now going to look at the construction of binomial trees as a first technique for pricing options in an approximative way.

These techniques were first proposed in:

Example

Suppose we want to value a European call option giving the right to buy a stock for the strike price $K = €21$ (the price in the contract) in 3 months (expiry date T). The current stock price S_0 is €20.
Example

Suppose we want to value a European call option giving the right to buy a stock for the strike price $K = €21$ (the price in the contract) in 3 months (expiry date T). The current stock price S_0 is €20.

We make a very simplifying assumption which in reality is not satisfied:
in 3 months the stock price will be either €22 or €18. We do not know the probability for the occurrence of the stock prices €22 or €18.
Example

Suppose we want to value a European call option giving the right to buy a stock for the strike price $K = €21$ (the price in the contract) in 3 months (expiry date T). The current stock price S_0 is €20.

We make a very simplifying assumption which in reality is not satisfied: in 3 months the stock price will be either €22 or €18. We do not know the probability for the occurrence of the stock prices €22 or €18.

However, at expiry date, we know the value of the option: if the stock price goes up (to €22), the payoff $S_T - K$ is €1; if the stock price goes down (to €18), then the option is worthless, so the value is 0.
A portfolio with one stock and Δ shares

Look at a portfolio which is generated at time 0 by buying Δ many shares of a stock (long position) and selling one call option of the stock (short position).

If f is the price of the option the portfolio at time 0 has value

$$20\Delta - f.$$

After three months the value of this portfolio can be computed: if the stock prices moves from €20 to €22 then the value of the shares is €22Δ and the value of the option is €1, so the total value of the portfolio is

$$22\Delta - 1$$

(in this case our contract partner has the right to buy from us one stock at the strike price €21, so we have to give him €1).

If the stock prices moves from €20 to €18 then the value of the shares is €18Δ and the value of the option is zero, so the total value of the portfolio 18Δ.

Strategy: delta hedging

The idea is now to choose \(\Delta \) such that the value of the portfolio in both cases (stock price up or down) is the same: so we require

\[
22\Delta - 1 = 18\Delta, \text{ so } \Delta = 0.25.
\]

Control: in 3 months
if \(S_T = \€ 22 \), then the portfolio is worth \(22 \cdot 0.25 - 1 = \€ 4.50 \).
if \(S_T = \€ 18 \), then the portfolio is worth \(18 \cdot 0.25 = \€ 4.50 \).
Strategy: delta hedging

The idea is now to choose Δ such that the value of the portfolio in both cases (stock price up or down) is the same: so we require

$$22\Delta - 1 = 18\Delta, \text{ so } \Delta = 0.25.$$

Control: in 3 months
if $S_T = €22$, then the portfolio is worth $22 \cdot 0.25 - 1 = €4.50$.
if $S_T = €18$, then the portfolio is worth $18 \cdot 0.25 = €4.50$.

Definition
The delta of an option is the number Δ of shares we should hold for one option (short position) in order to create a riskless hedge: so after maturity time T the value of the portfolio containing Δ share and selling one call option is for both cases $S_T > K$ and $S_T \leq K$ the same.
The construction of a riskless hedge is called delta hedging.
So choosing $\Delta = 0.25$ leads to a portfolio where there is **no uncertainty** about the value of the portfolio in 3 months, namely €4.50. Since the portfolio has no risk we can compute its value at time 0 by discounting the price with the risk-free rate (no arbitrage opportunities). This means that we can find the value of the portfolio at time 0 by discounting the value in 3 months:

If we suppose that $r = 12\%$, then the portfolio at time 0 is worth $€4.367$, and so $f = 20 \times 0.25 - 4.367 = 0.633$.

$\frac{5}{12}$
So choosing \(\Delta = 0.25 \) leads to a portfolio where there is **no uncertainty** about the value of the portfolio in 3 months, namely \(€4.50 \). Since the portfolio has no risk we can compute its value at time 0 by discounting the price with the risk-free rate (no arbitrage opportunities). This means that we can find the value of the portfolio at time 0 by discounting the value in 3 months:

If we suppose that \(r = 12\% \), then the portfolio at time 0 is worth

\[
4.50e^{-0.12 \cdot 0.25} = €4.367.
\]
So choosing $\Delta = 0.25$ leads to a portfolio where there is no uncertainty about the value of the portfolio in 3 months, namely €4.50. Since the portfolio has no risk we can compute its value at time 0 by discounting the price with the risk-free rate (no arbitrage opportunities). This means that we can find the value of the portfolio at time 0 by discounting the value in 3 months:

If we suppose that $r = 12\%$, then the portfolio at time 0 is worth

$$4.50e^{-0.12\cdot0.25} = €4.367.$$

Let f be the price of the call option today. Then the portfolio at time 0 has worth

$$20 \cdot 0.25 - f = 4.367,$$

and so

$$f = 20 \cdot 0.25 - 4.367 = 0.633.$$
The general case

We want to value the price \(f \) of an European option (put or call). The current stock price is \(S_0 \).
The general case

We want to value the price f of an European option (put or call). The current stock price is S_0.

We assume that after maturity time T the stock price S_T will be either

$$S_0 \cdot u \ (u > 1) \quad \text{or} \quad S_0 \cdot d \ (d < 1),$$

where u stands for up, and d for down.

After maturity time T we compute the value (payoff) of the option depending on the stock price S_T and the strike price K: there are only two possibilities and we denote the value of the option by f_u if the stock has gone up and by f_d if it has gone down.
The general case

We want to value the price f of an European option (put or call). The current stock price is S_0.

We assume that after maturity time T the stock price S_T will be either

$$S_0 \cdot u \quad (u > 1) \quad \text{or} \quad S_0 \cdot d \quad (d < 1),$$

where u stands for up, and d for down.

After maturity time T we compute the value (payoff) of the option depending on the stock price S_T and the strike price K: there are only two possibilities and we denote the value of the option by f_u if the stock has gone up and by f_d if it has gone down.

In our example:

if the stock price goes up (to €22), the value f_u is €1;
if the stock price goes down (to €18), then the value $f_d = 0$.
The delta of a stock

Look at a portfolio at time 0 generated by

buying Δ shares of a stock (long position) at stock price S_0
selling one option of the stock (short position).

If f is the price of the option at time 0 then the portfolio at time 0
has value

$$\Delta S_0 - f.$$

After expiry date T we can compute the value of the portfolio:

if stock goes up the portfolio is worth $S_0 \cdot u \cdot \Delta - f_u$,
if stock goes down the portfolio is worth $S_0 \cdot d \cdot \Delta - f_d$,

We choose Δ such that the value of the portfolio at time T in
both cases (stock price up or down) is the same:

$$S_0 \cdot u \cdot \Delta - f_u = S_0 \cdot d \cdot \Delta - f_d,$$
The delta of a stock

From \(S_0 \cdot u \cdot \Delta - f_u = S_0 \cdot d \cdot \Delta - f_d \), we find

\[
\Delta = \frac{f_u - f_d}{S_0(u - d)}.
\]

Theorem

Assume that the stock price \(S_0 \) after time \(T \) goes either up to \(S_0 \cdot u \) with \(u > 1 \) or down to \(S_0 \cdot d \) with \(d < 1 \). Let \(f_u \) and \(f_d \) be the payoffs at maturity time \(T \) in the case of up or down movement. Then the delta of one option is

\[
\Delta = \frac{f_u - f_d}{S_0(u - d)} = \frac{\text{difference of payoffs at time } T}{\text{difference of prices of stock at time } T}.
\]

The delta of a call option is positive, whereas the delta of a put option is negative.
Using the choice

$$\Delta = \frac{f_u - f_d}{S_0(u - d)}$$

the value of portfolio at time T is in both cases (stock up or down) the same, namely:

$$S_0 \cdot u \cdot \Delta - f_u = S_0 \cdot u \cdot \frac{f_u - f_d}{S_0(u - d)} - f_u$$

which is equal to

$$u \cdot \frac{f_u - f_d}{u - d} - f_u = \frac{u \cdot (f_u - f_d) - (u - d) \cdot f_u}{u - d} = \frac{d \cdot f_u - u \cdot f_d}{u - d}.$$

Thus the value of the portfolio at time T is

$$P_T := \frac{d \cdot f_u - u \cdot f_d}{u - d}.$$
The portfolio is riskless. Since no arbitrage opportunities exist the portfolio at time 0 is worth

\[P_0 = e^{-rT} P_T = e^{-rT} \frac{df_u - uf_d}{u - d}. \]

The portfolio at time 0 is also worth

\[P_0 = S_0 \Delta - f = \frac{f_u - f_d}{u - d} - f. \]
The portfolio is riskless. Since no arbitrage opportunities exist the portfolio at time 0 is worth

\[P_0 = e^{-rT} P_T = e^{-rT} \frac{df_u - uf_d}{u - d}. \]

The portfolio at time 0 is also worth

\[P_0 = S_0 \Delta - f = \frac{f_u - f_d}{u - d} - f. \]

Comparing these two values, we find

\[f = \frac{f_u - f_d}{u - d} - e^{-rT} \frac{df_u - uf_d}{u - d} \]

\[= \frac{e^{-rT}}{u - d} \left(e^{rT} (f_u - f_d) - (df_u - uf_d) \right) \]

\[= \frac{e^{-rT}}{u - d} \left(f_u (e^{rT} - d) + f_d (u - e^{rT}) \right). \]
Put now

\[p = \frac{e^{rT} - d}{u - d}. \]

Then

\[f = e^{-rT} \left(pf_u + \frac{u - e^{rT}}{u - d} f_d \right). \]

Since

\[1 - p = \frac{u - d}{u - d} - \frac{e^{rT} - d}{u - d} = \frac{u - e^{rT}}{u - d} \]

we obtain the final formula for the price \(f \) of an option:

\[f = e^{-rT} \left[pf_u + (1 - p) f_d \right]. \]
Summary

Theorem
Assume that the stock price S_0 after time T goes either up to $S_0 \cdot u$ with $u > 1$ or down to $S_0 \cdot d$ with $d < 1$. Let f be the price of an option (either call or put) at time 0 with payoff f_u and f_d respectively at time T. If r is the riskless interest rate then

$$f = e^{-rT} \left[pf_u + (1 - p)f_d \right] \quad \text{where } p = \frac{e^{rT} - d}{u - d}.$$
Summary

Theorem
Assume that the stock price S_0 after time T goes either up to $S_0 \cdot u$ with $u > 1$ or down to $S_0 \cdot d$ with $d < 1$. Let f be the price of an option (either call or put) at time 0 with payoff f_u and f_d respectively at time T. If r is the riskless interest rate then

$$f = e^{-rT} \left[pf_u + (1 - p)f_d \right] \quad \text{where} \quad p = \frac{e^{rT} - d}{u - d}.$$

In our previous example we had $u = 1.1$, $d = 0.9$, $f_u = 1$, $f_d = 0$, $r = 0.12$ and $T = 0.25$, so

$$p = \frac{e^{0.12 \cdot 0.25} - 0.9}{1.1 - 0.9} = 0.6523,$$

$$f = e^{-0.12 \cdot 0.25} \left(0.6523 \cdot 1 + 0.3477 \cdot 0 \right) = 0.633.$$