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Chapter 3: Congruences and Congruence Classes

(3.1) Definition Let n be a non-zero integer. If a and b are integers, we say that a and

b are congruent modulo n if n exactly divides b− a. We write

a ≡ b mod n

to signify that a and b are congruent modulo n.

Thus a ≡ b mod n means that b − a must be a multiple of n (as n is an exact

divisor of b− a) and so b = a + cn for some integer c. Notice that if a ≡ b mod n, then

it is also true that b ≡ a mod n. Thus, we can interchange order in congruences.

Examples

(a) Taking n equal to 2, integers a and b are congruent modulo 2 precisely when a and

b are both even or both odd (an integer is even if it is divisible by 2, odd if it is not

divisible by 2).

(b) Observe the simple congruences 13 ≡ 5 mod 8, and 2 ≡ −1 mod 3.

The property of congruence of integers has many similarities with the property of

equality of integers, as we intend to prove now.

(3.2) Theorem Let n be a non-zero integer and let a and b be integers. Then we have

the following.

(i) If a ≡ b mod n, then ka ≡ kb mod n for all integers k.

(ii) If a ≡ b mod n and b ≡ c mod n, then a ≡ c mod n.

(iii) If a ≡ a′ mod n and b ≡ b′ mod n, then a + b ≡ a′ + b′ mod n and ab ≡ a′b′ mod n.

(iv) If a ≡ b mod n and t is a positive integer at ≡ bt mod n.
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Proof (i) Suppose that a ≡ b mod n. Then we have

b− a = sn

for some integer s. If k is any integer, we obtain

kb− ka = ksn

on multiplying the equation above by k. But this equation says that n divides the

difference kb− ka and so ka ≡ kb mod n.

(ii) Suppose next that If a ≡ b mod n and b ≡ c mod n. Then it follows that

b− a = un, c− b = sn

for suitable integers u and s. Adding the two equations we get

c− b + b− a = c− a = un + sn = (u + s)n,

so that n divides c− b. Hence a ≡ c mod n.

(iii) Suppose that If a ≡ a′ mod n and b ≡ b′ mod n. By definition,

a′ − a = rn, b′ − b = qn

for suitable integers r and q. Adding these equations, we get

a′ − a + b′ − b = (a′ + b′)− (a + b) = (r + q)n

and this implies that

a + b ≡ a′ + b′ mod n.

We can also write

a′ = a + rn, b′ = b + qn

and by multiplication we get

a′b′ = (a + rn)(b + qn) = ab + rbn + aqn + rqn2

= ab + (rb + aq + rqn)n.
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This shows that n divides a′b′ − ab, so that a′b′ ≡ ab mod n.

(iv) We proceed by induction on t. The result is obvious if t = 1. Suppose then that

ar ≡ br mod n. We need to prove that ar+1 ≡ br+1 mod n. But if in part (iii) we

replace a by ar, b by br, a′ by a and b′ by b, we get ara ≡ brb mod n and this proves

what we want.

Sometimes the study of integers leads us to seek solutions of congruences of the

form

bx ≡ c mod n,

where b, c and n are given integers, and we are looking for an integer x that solves the

problem.

(3.3) Lemma Let b, c and n be integers, with n non-zero. Then there exists an integer

solution x to the congruence bx ≡ c mod n if and only if the gcd of b and n divides c.

Proof Let d = gcd(b, n). Suppose that there exists an integer x that satisfies the

congruence. Then there exists an integer e with

bx− c = en.

Now d divides b, and hence bx, and also divides en. Thus d divides bx − en = c, as

required.

Conversely, suppose that d divides c, and put c = fd for some integer f . By

Euclid’s algorithm, we can find integers s and t so that

sb + tn = d.

Multiplying by f , we get fsb + ftn = fd = c. Thus n divides fsb− c and hence

fsb ≡ c mod n.

If we take x = fs, we get an integer solution to the congruence.
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Note that having found the solution x as above, any integer x′ with x′ ≡ x mod n

will also solve the congruence. Then, if we want the smallest positive solution, we find

the unique positive integer r lying between 0 and n− 1 that satisfies x ≡ r mod n, and

then this r will give the smallest positive solution. (In other words, r is the remainder

on dividing x by n.)

Examples

(a) There is no integer solution x to the congruence 12x ≡ 7 mod 21, since the gcd of

12 and 21 is 3 and 3 does not divide 7.

(b) There is an integer solution to 12x ≡ 17 mod 35, since 12 and 35 are relatively

prime. Performing the Euclidean algorithm, we get

35 = 2× 12 + 11, 12 = 11 + 1.

So, 1 = 12 − 11 = 12 − (35 − 2 × 12) = (3 × 12) − 35. Multiplying by 17, we get

17 = (51 × 12) − (17 × 35) and thus we may take x = 51. By the remark above, x′

with x′ ≡ 51 mod 35 will also give a solution and so we may take x′ = 16 as a smaller

solution.

(c) 99x ≡ 5 mod 221. Clearly, 99 and 221 are relatively prime, and thus we may solve

the congruence. We have
1 = 7− 2× 3

2 = 23− 7× 3

7 = 99− 4× 23

23 = 221− 2× 99

This leads to
1 = 10× 7− 3× 23

1 = 10× 99− 43× 23

1 = 96× 99− 43× 221

Hence

5 = 5× 96× 99− 43× 221× 5
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which gives 99(5× 96) ≡ 5 mod 221. We may thus take x = 5× 96 = 480 as a solution.

As 480 = 2× 221 + 38, we get x = 38 as the smallest positive solution.

Example Find the smallest positive integer x that satisfies 169x ≡ 5 mod 408.

We have
1 = 5− 2× 2

2 = 12− 2× 5

5 = 29− 2× 12

12 = 70− 2× 29

29 = 169− 2× 70

70 = 408− 2× 169

This leads to
1 = 5× 5− 2× 12

1 = 5× 29− 12× 12

1 = 29× 169− 70× 70

1 = 169× 169− 70× 408.

This gives

169× 169 ≡ 1 mod 408.

Multiplying by 5 we get

169× (169× 5) ≡ 5 mod 408.

This shows that x = 169× 5 = 845 will solve the congruence. As 845 is larger than 408,

we remove multiples of 408 to make the answer smaller. Now

x ≡ 29 mod 408

and so x = 29 is the smallest positive solution.

In the theory of congruence, the modulus most frequently used is a prime integer,

and it is congruences modulo a prime that we will discuss now. Recall that the binomial

coefficient
(

n
m

)
is defined by (

n

m

)
=

n!
m!(n−m)!

.
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While it is not obvious from this definition, the binomial coefficients are integers. This

follows, for example, from the fact that
(

n
m

)
counts the number of subsets of size m in

a set of size n.

(3.4) Lemma Let p be a prime. Then p divides
(

p
m

)
for 1 ≤ m ≤ p− 1.

Proof We show that

m

(
p

m

)
= p

(
p− 1
m− 1

)
.

Now

m

(
p

m

)
= m

p!
m!(p−m)!

=
p!

(m− 1)!(p−m)!

and

p

(
p− 1
m− 1

)
=

p(p− 1)!
(m− 1)!(p− 1− (m− 1))!

=
p!

(m− 1)!(p−m)!

This proves what we want. Thus p divides m
(

p
m

)
. By Theorem 2.14, p divides m or p

divides
(

p
m

)
. But if 1 ≤ m ≤ p− 1, p cannot divide m, as it is too large. Thus p divides(

p
m

)
, as required.

Now we can move to the proof of an important result in the theory of congruence

modulo a prime.

(3.5) Theorem Let p be a prime and let n be a positive integer. Then np ≡ n mod p.

Proof We prove this result by induction on n. The theorem is clear if n = 1. Suppose

then that rp ≡ r mod p. We wish then to prove that (r + 1)p ≡ r + 1 mod p. By the

binomial theorem,

(r + 1)p = 1p +
(

p

1

)
r + · · ·+

(
p

i

)
ri + · · ·+

(
p

p− 1

)
rp−1 + rp.

By Lemma 3.4, p divides each binomial coefficient
(
p
i

)
for 1 ≤ i ≤ p− 1 and thus

(r + 1)p ≡ rp + 1 mod p,

by properties of congruences. But rp ≡ r mod p, by induction and thus (r + 1)p ≡

r + 1 mod p.
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(3.6) Corollary (Fermat’s Little Theorem) Let p be a prime and let n be a positive

integer. Suppose that p does not divide n. Then np−1 ≡ 1 mod p.

Proof We have seen that

np ≡ n mod p

and thus p divides np − n = n(np−1 − 1). By Theorem 2.14, p divides one of n and

np−1− 1. The first case is ruled out and thus p divides np−1− 1. This of course implies

the desired result.

The main force of Fermat’s Little Theorem is that it enables us to investigate

congruences without the need to perform complicated multiplication processes.

Examples

(a) Show that 95 − 45 is divisible by 11. Now 9 = 32 and so 95 = 310 ≡ 1 mod 11.

Similarly, 4 = 22 and so 45 = 210 ≡ 1 mod 11. Therefore,

95 − 45 ≡ 1− 1 ≡ 0 mod 11,

giving what we want.

(b) Find the smallest positive integer x so that 258 ≡ x mod 53. Now as 53 is a prime,

we have

252 ≡ 1 mod 53,

by Fermat’s Little Theorem. Thus,

258 ≡ 26 ≡ 64 mod 53.

But 64 ≡ 11 mod 53 and we therefore take x = 11 as the solution to the congruence.

(c) Find the smallest positive integer a satisfying 344 ≡ a mod 47.

By FLT, we have 346 ≡ 1 mod 47, since 47 is a prime. Thus if 344 ≡ a mod 47, it follows

that 346 ≡ 9a ≡ 1 mod 47. Thus a is a solution of 9a ≡ 1 mod 47. By calculation,

1 = 9− 4× 2, 2 = 47− 5× 9
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which shows that 1 = 21× 9− 4× 47. Hence 9× 21 ≡ 1 mod 47 and since 0 < 21 < 47,

21 is the required solution.

(3.7) Definition Let p be a prime and let n be a positive integer not divisible by p. The

smallest positive integer m with nm ≡ 1 mod p is called the order of n modulo p.

Note that Fermat’s Little Theorem shows that the order of n modulo p is at most

p− 1. However, we can improve this observation, as we now show.

(3.8) Theorem Let p be a prime and let n be a positive integer not divisible by p.

Suppose that for some positive integer k, we have nk ≡ 1 mod p. Then the order of n

modulo p is a divisor of k. Thus, in particular, the order of n modulo p is a divisor of

p− 1.

Proof Let m be the order of n modulo p. By the division algorithm, we may write

k = mq + r,

where 0 ≤ r < m. We want to show that r = 0, which implies that m is an exact divisor

of k. Now we have

nk = nmqnr

and as m is the order of n modulo p,

nm ≡ 1 mod p

Raising each side to the power q, we obtain

(nm)q ≡ 1q ≡ 1 mod p

and thus

nmq ≡ 1 mod p

Then by Theorem 3.2 (i), we may multiply each side of this congruence by nr to obtain

nmqnr ≡ 1 · nr mod p and hence nk ≡ nr mod p.
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Since nk ≡ 1 mod p by assumption, we obtain nr ≡ 1 mod p. As r is non-negative and

less than m, the minimality of m forces the conclusion that r = 0. This means that m

divides k, as required. Finally, since np−1 ≡ 1 mod p, by Fermat’s Little Theorem, we

obtain that m divides p− 1 by taking k = p− 1.

Examples

(a) Find the order of 2 modulo 23. Now 23 is a prime and it follows that the order is a

divisor of 23-1=22. There is no better way to find the order than to check the divisors

of 22 in turn. Now the order is clearly not 1 or 2, so it can only be 11 or 22. We have

25 = 32 ≡ 9 mod 23, 210 ≡ 92 ≡ 81 ≡ 12 mod 23.

Therefore, 211 ≡ 24 ≡ 1 mod 23 and we see that the order is 11.

(b) Find the order of 3 modulo 41. Here again, 41 is a prime and so the order is a

divisor of 40, hence one of 2, 4, 8, 5, 10, 20 and 40.

32 ≡ 9 mod 41, 34 ≡ 81 ≡ −1 mod 41.

Now it is easier to work with the negative integer −1 rather than 40, since −1 ≡

40 mod 41. Thus 38 ≡ (−1)2 = 1 mod 41 and we see that 3 has order 8 modulo 41. The

order can’t be 5, as five is not a divisor of 8.

For our next topic, we will consider a generalization of Fermat’s Little Theorem.

(3.9) Definition Let n be an integer greater than 1. Then we define ϕ(n) to be the

number of integers b that satisfy

1 ≤ b < n and gcd(b, n) = 1.

We call ϕ the Euler function and we will work out a way later to calculate ϕ(n)

from a knowledge of the prime factorization of n.

Example Take n = 12. The prime divisors of 12 are 2 and 3, so an integer is relatively

prime to 12 if it is not divisible by either 2 or 3. The only integers lying between 1 and

12 that are not divisible by 2 or 3 are 1, 5, 7, 11 and it follows that ϕ(12) = 4.
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(3.10) Lemma Let c1, c2, . . . , cϕ(n) denote the ϕ(n) different integers lying between 1

and n that are relatively prime to n and let b be any integer relatively prime to n. Form

the ϕ(n) products

bc1, bc2, . . . , bcϕ(n)

and for each i, let ri be the remainder when bci is divided by n. Then r1, r2, . . . , rϕ(n)

are just c1, c2, . . . , cϕ(n) in some rearranged order.

Proof For simplicity, write ϕ(n) = m. We have now

bc1 = q1n + r1

bc2 = q2n + r2

...

bcm = qmn + rm,

where each remainder ri satisfies 0 ≤ ri < n. We first show that the remainders are

all different. For suppose, by way of contradiction, that ri = rj but ci 6= cj . Then we

obtain

bci − qin = bcj − qjn.

This implies that n divides b(ci−cj) However, as b and n are relatively prime, we deduce

from Theorem 2.10 that n divides ci− cj . Now we are assuming that ci is different from

cj and it then does no harm to assume that ci > cj . As n divides ci − cj , we obtain

ci − cj = rn for some positive integer r (since ci − cj is positive). Hence ci = cj + rn.

This means that, as cj is positive, ci is greater than n, contrary to the way in which

these numbers were chosen. Thus we really do have ri 6= rj . Next we show that each ri

is relatively prime to n. For suppose that gcd(ri, n) = d is greater than 1. Then there

is a prime p, say that divides ri and n. Since bci = qin + ri, we deduce that p divides

bci. Since p is a prime, Theorem 2.14 implies that p divides b or ci. In the first case, p

is a common divisor of b and n, in the second p is a common divisor of ci and n, both

of which are contrary to hypothesis. Thus we have m = ϕ(n) different integers between

0 and n − 1 which are all relatively prime to n. These can only be the ci’s in some

order.
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We move on now to prove Euler’s generalization of Fermat’s Little Theorem.

(3.11) Theorem Let n > 1 be an integer and let b be any integer relatively prime to n.

Let ϕ(n) denote the number of integers lying between 1 and n that are relatively prime

to n. Then we have

bϕ(n) ≡ 1 mod n.

Proof As before, write m = ϕ(n). Let c1, c2, . . . , cm denote all the integers lying

between 1 and n that are relatively prime to n, and let r1, . . . , rm be the remainders

when bc1,. . . , bcm are divided by n. Lemma 3.10 implies that

r1r2 · · · rm = c1c2 · · · cm.

However, bci ≡ ri mod n and thus repeated use of Theorem 3.2 (iii) shows that

(bc1)(bc2) · · · (bcm) ≡ r1r2 · · · rm mod n

≡ c1c2 · · · cm mod n.

Hence, rearranging

bϕ(n)c1c2 · · · cm ≡ c1c2 · · · cm mod n

leading to

(bϕ(n) − 1)c1c2 · · · cm ≡ 0 mod n.

As each of c1, c2, . . . , cm is relatively prime to n we deduce from Theorem 2.10 that

bϕ(n) − 1 ≡ 0 mod n

which proves what we want.

Observe that Euler’s theorem generalizes Fermat’s Little Theorem. For, if we take

n = p, where p is a prime, the integers lying between 1 and p that are relatively prime

to p are

1, 2, 3 . . . , p− 1

and thus ϕ(p) = p − 1. Note also that in the approach given in Theorem 3.11 there is

no need to investigate binomial coefficients.
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Example

Take n = 25. The integers lying between 1 and 25 that are relatively prime to 25 are

those not divisible by 5, and thus are

1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 16, 17, 18, 19, 21, 22, 23, 24

and thus we get ϕ(25) = 20. It follows that if b is relatively prime to 25 (hence not

divisible by 5), we get

b20 ≡ 1 mod 25.

Next, we proceed to calculate ϕ(n) in a systematic way for any value of n. We

begin with the case that n is a power of a prime p.

(3.12) Lemma Let p be a prime and let r be a positive integer. Then we have

ϕ(pr) = pr−1(p− 1).

Proof Instead of calculating the number of integers between 1 and pr that are relatively

prime to pr, we calculate the number for which the gcd is greater than 1. It is clear

that an integer has a common factor with pr precisely when p divides that integer. We

therefore calculate the number of integers between 1 and pr that are divisible by p. The

integers in question are

1× p = p, 2× p = 2p, . . . , pr−1 × p = pr

and hence there are pr−1 of them. As there are pr integers between 1 and pr and for

pr−1 the gcd with pr is greater than 1,

pr − pr−1 = pr−1(p− 1)

are relatively prime to pr.

We prove next a simple fact relating to the gcd of a product of integers.
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(3.13) Lemma Let m and n be integers. Then an integer r is relatively prime to mn if

and only if it is relatively prime to both m and n.

Proof Consider first an integer r that is relatively prime to mn. Then we claim that r

is relatively prime to both m and n. For if d = gcd(r, m), then d divides both r and

m and hence divides r and mn. Thus d is a common divisor of r and mn and thus

must be 1, since gcd(r, mn) = 1 by assumption. Similarly, gcd(r, n) = 1. Conversely,

suppose that s is an integer relatively prime to both m and n and let e = gcd(s,mn).

We claim that e = 1. For if this is not true, e is divisible by some prime p. Then p

divides s and also mn. By Theorem 2.14, p divides one of m and n, say m. But then

p is a common divisor s and m, contrary to the assumption that gcd(s,m) = 1. Hence

e = 1, as required.

In order to make use of Lemma 3.12, we need the following important fact.

(3.14) Theorem Let m and n be relatively prime positive integers. Then we have

ϕ(mn) = ϕ(m)ϕ(n).

Proof We calculate the number of integers lying between 1 and mn that are relatively

prime to both m and n. By Lemma 3.13 above, this equals the number of integers

between 1 and mn relatively prime to mn, which is what we want to find. We write

down all the integers between 1 and mn according to the following scheme

1 1 + m 1 + 2m . . . 1 + (n− 1)m
2 2 + m 2 + 2m . . . 2 + (n− 1)m
3 3 + m 3 + 2m . . . 3 + (n− 1)m
...

...
...

...
r r + m r + 2m . . . r + (n− 1)m
...

...
...

...
m 2m 3m . . . nm

We want to look for integers in this scheme that are relatively prime to both m and n.

Let r be a positive integer not exceeding m. If d = gcd(m, r) is bigger than 1, clearly no

integer in the r-th row is relatively prime to m, since all integers in this row are divisible

by d. Thus, as we are certainly looking for integers in the scheme that are relatively

13



prime to m, we need only look in the r-th row, where gcd(m, r) = 1. So, take such an

integer r with gcd(r, m) = 1. The integers in the r-th row are

r, r + m, r + 2m, . . . , r + (n− 1)m

and we claim that they are all relatively prime to m. For consider a typical integer

r + km in this row and let e = gcd(m, r + km). Then e divides m and hence km, and

therefore e divides r + km− km = r, since e also divides r + km. Thus e is a common

divisor of m and r, which implies that e = 1, since gcd(r, m) = 1.

We show next that no two of these n integers in the r-th row are congruent modulo

n. For suppose we have

r + im ≡ r + jm mod n,

where 0 ≤ i ≤ n− 1, 0 ≤ j ≤ n− 1. Then we obtain that

n divides im− jm = (i− j)m.

But as gcd(m,n) = 1, Theorem 2.11 implies that n divides i−j and this is only possible

if i− j = 0. This proves what we want.

Our argument has shown that the n integers

r, r + m, r + 2m, . . . , r + (n− 1)m

give rise to n different remainders modulo n (these remainders being 0, 1, 2, . . . , n− 1

in some order). Consequently, exactly ϕ(n) of the integers in the r-th row are relatively

prime to n, since this is true of their remainders modulo n. We have ϕ(m) choices for

r and ϕ(n) integers relatively prime to n in each row for each choice of r, giving

ϕ(m)ϕ(n)

integers that are relatively prime to both m and n and hence to mn. This implies that

ϕ(mn) = ϕ(m)ϕ(n)
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and completes the proof.

We can now evaluate ϕ(n) in general.

(3.15) Theorem Let n be a positive integer and let p1, . . . , pr be all the different prime

divisors of n. Let

n = pa1
1 · · · par

r

be the factorization of n into primes. Then

ϕ(n) = pa1−1
1 (p1 − 1) · · · par−1

r (pr − 1)

= n(1− 1
p1

) · · · (1− 1
pr

).

Proof As the integers pa1
1 , pa2

2 · · · par
r are relatively prime to each other, Theorem 3.14

and Lemma 3.12 show that

ϕ(n) = ϕ(pa1
1 )ϕ(pa2

2 · · · par
r ) = pa1−1

1 (p1 − 1)ϕ(pa2
2 · · · par

r ).

Repetition of the argument leads to the desired conclusion.

Example

Evaluate ϕ(210). Here,

210 = 2× 3× 5× 7

and thus
ϕ(210) = ϕ(2)ϕ(3)ϕ(5)ϕ(7)

= (2− 1)(3− 1)(5− 1)(7− 1) = 48.

This shows that there are 48 integers between 1 and 210 that are relatively prime to

210 and hence not divisible by any of 2, 3, 5 or 7. With the exception of 1, such integers

are either primes or are non-primes that are products of primes drawn from 11 and 19.

The only such numbers are 112 = 121, 132 = 169 and 11× 13 = 143, 11× 17 = 187 and

11 × 19 = 209 Thus there are 48 − 6 = 42 primes between 1 and 210 different from 2,

3, 5 and 7, hence 46 primes between 1 and 210.

Example
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Find the smallest positive integer a so that

11100 ≡ a mod 45.

Now 45 = 32 × 5 and thus

ϕ(45) = 6× 4 = 24.

Since 11 and 45 are relatively prime, Euler’s theorem implies that

1124 ≡ 1 mod 45.

Hence

1124×4 ≡ 1 mod 45.

Thus

11100 = 1196114 ≡ 114 mod 45.

But 112 = 121 ≡ −14 mod 45 and thus 114 ≡ 196 ≡ 16 mod 45. It follows that a = 16.

We move on to consider a more complicated congruence problem. We need some

preliminary lemmas.

(3.16) Lemma Let a be a non-zero integer and let m1, . . . , mn be integers with

gcd(a,m1) = · · · = gcd(a,mn) = 1

(so that a is relatively prime to each of the mi). Then a is relatively prime to m1 · · ·mn.

Proof Suppose that the two integers are not relatively prime. Then there exists a prime

p that divides a and m1 · · ·mn. But then p divides some mi, by Theorem 2.14. Such a

p is a common divisor of a and mi, contrary to hypothesis. Thus the two integers are

relatively prime.

(3.17) Lemma Let m1, . . . , mn be integers that are pairwise relatively prime (so that

gcd(mi,mj) = 1 if i 6= j) and suppose that each mi divides some integer c. Then the

product m1 · · ·mn divides c.
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Proof We proceed by induction on n. The result is true for n = 1. Suppose the result

is true when n = r. Then m1 · · ·mr divides c. Now we wish to prove the result when

n = r + 1. By Lemma 3.16, mr+1 is relatively prime to m1 · · ·mr and thus there exist

integers s and t with

smr+1 + t(m1 · · ·mr) = 1.

Hence multiplying by c, we get

smr+1c + t(m1 · · ·mr)c = c.

Since both mr+1 and m1 · · ·mr divide c, we have

c = mr+1e, c = (m1 · · ·mr)f,

for certain integers e and f . Substituting these values for c into our earlier equation,

we obtain

mr+1(m1 · · ·mr)sf + mr+1(m1 · · ·mr)te = m1 · · ·mrmr+1(sf + te) = c

which shows that m1 · · ·mr+1 divides c. This completes the induction step and proves

the theorem.

Now we can prove our congruence theorem, known as the Chinese remainder

theorem, as it is found in ancient Chinese mathematical manuscripts.

(3.18) Theorem (Chinese remainder theorem) Let m1, . . . , mn be positive integers that

are pairwise relatively prime (so that gcd(mi,mj) = 1 if i 6= j). Let a1, . . . , an be any

integers. Then there exists an integer solution x to the following system of congruences:

x ≡ a1 mod m1

x ≡ a2 mod m2
...

...
...

x ≡ an mod mn.

If x′ is any other solution, then we have x ≡ x′ mod m1m2 · · ·mn. There is a unique

solution lying between 1 and m1m2 · · ·mn.
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Proof Pick any index i lying between 1 and n. We first show that there is an integer xi

satisfying
xi ≡ 0 mod m1
...

...
...

xi ≡ 0 mod mi−1

xi ≡ 1 mod mi

xi ≡ 0 mod mi+1

...
...

...
xi ≡ 0 mod mn.

We set ki = (m1 · · ·mn)/mi. By Lemma 3.16, mi is relatively prime to ki. Hence there

exist integers ri and si with

riki + simi = 1.

Therefore, we obtain
riki ≡ 0 mod ki

riki ≡ 1 mod mi.

But m1, . . . , mi−1, mi+1, . . . , mn all divide ki. Hence, if we set xi = riki, we clearly

have
xi ≡ 0 mod m1
...

...
...

xi ≡ 0 mod mi−1

xi ≡ 1 mod mi

xi ≡ 0 mod mi+1

...
...

...
xi ≡ 0 mod mn,

as required. Finally, to solve the original congruence, we set

x = a1x1 + a2x2 + · · ·+ anxn.

From the previous congruences, it is easy to see that

x ≡ aixi mod mi

and hence

x ≡ ai mod mi,

since xi ≡ 1 mod mi. Thus this x value solves the congruences. If we take the remainder

r on the division of x by m1 · · ·mn, we claim that r also satisfies the congruence.
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For since x ≡ r mod m1 · · ·mn, it is clear that x ≡ r mod mi for each i and thus

r ≡ ai mod mi for each i, as required.

To investigate other solutions, suppose that x′ also solves the congruences. Then

we have

x ≡ x′ ≡ ai mod mi

for all i and hence

x− x′ ≡ 0 mod mi

for all i. As the mi are pairwise relatively prime, Lemma 3.17 implies that m1 · · ·mn

divides x− x′, so that

x− x′ ≡ 0 mod m1 · · ·mn,

as required. The solution described above is thus the unique one between 1 and

m1 · · ·mn.

Example Find an integer solution x of the congruences

x ≡ 7 mod 11

x ≡ 3 mod 18

x ≡ 7 mod 25,

where x is an integer between 1 and 11× 18× 25 = 4950.

We start by finding x1 with

x1 ≡ 1 mod 11

x1 ≡ 0 mod 18

x1 ≡ 0 mod 25.

Following the proof, we set k1 = 18× 25 = 450. We try to find integers r1 and s1 with

450r1 + 11s1 = 1.

Following the Euclidean algorithm, we get r1 = −1, s1 = 41. Then according to the

proof x1 = 450r1 = −450.
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Now we look for x2 with
x2 ≡ 0 mod 11

x2 ≡ 1 mod 18

x2 ≡ 0 mod 25.

We set k2 = 11× 25 = 275 and look for r2 and s2 with

275r2 + 18s2 = 1.

By the Euclidean algorithm, we find r2 = −7 and s2 = 107. Hence we take x2 =

275r2 = −1925. Finally look for x3 with

x3 ≡ 0 mod 11

x3 ≡ 0 mod 18

x3 ≡ 1 mod 25.

We take k3 = 11× 18 = 198 and look for r3 and s3 so that

198r3 + 25s3 = 1.

We obtain r3 = 12 and s3 = −95. Hence x3 = 198r3 = 2376. The solution for x is

−450× 7− 1925× 3 + 7× 2376 = 7707.

Calculating the remainder when 7707 is divided by 4950, we reach the solution 2757,

which is the unique one in the given range. To check, we have

2757 ≡ 7 mod 11 as 11 divides 2750

2757 ≡ 3 mod 18 as 18 divides 2754

2757 ≡ 7 mod 25 as 25 divides 2750

2757 is the unique solution in the specified range.
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