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Chapter 2. Introduction to Number Theory

In this chapter, we intend to develop some simple properties of numbers that lead to the study

of more complicated structures in abstract algebra. We are concerned throughout this chapter

with integers, that is to say, whole numbers.

2.1 Definition An integer c is said to divide an integer b if there is some integer d with b = cd.

We also say in this case that b is divisible by c.

Note that the only integer divisors of 1 and −1 are ±1. This is an important fact. Fur-

thermore, suppose that c divides both a and b. Then we claim that c divides ra + sb for any

integers r and s. For, we can write

a = cd, b = ce

for certain integers d and e and then

ra + sb = rcd + sce = c(rd + se).

This shows that c divides exactly into ra + sb.

We now state a slight variation on the principle of mathematical induction, known as the

principle of complete induction.

(2.2) Axiom (Principle of complete induction) Let P (n) be a mathematical proposition made

for each integer n ≥ 1. Suppose that P (1) is true. Suppose also that for any given value r of

n, the assumption that all of P (1), P (2), . . . , P (r) are true implies that P (r + 1) is true. Then

P (n) is true for all values of n.

We use this principle of complete induction to prove a well known fact used in arithmetic.

(2.3) Theorem (Division algorithm) Let a and b be positive integers. Then there exist unique

integers q ≥ 0 and r with

a = bq + r,

where 0 ≤ r < b. We call q the quotient and r the remainder in the division of a by b.

Proof Using the principle of complete induction, we assume that the result is true for all positive

integers less than a, and then try to prove the result is true for a. Suppose first that a < b.

Then we just take q = 0, and r = a. This is the only possible choice. If a = b, we take q = 1,
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r = 0, and again this is the only possible choice. Finally, suppose that a > b. Then a − b > 0.

By induction, since 0 < a− b < a, we can write

a− b = sb + t,

where s and t are integers with s ≥ 0 and 0 ≤ t < b. Then by addition,

a− b + b = a = (s + 1)b + t

and we just take q = s + 1, and r = t. This proves that we can find q and r. Their uniqueness

follows from the uniqueness of s and t as they arise for a− b.

(2.4) Definition We say that a non-empty subset S of integers is a subgroup of Z if 0 is in S and

whenever a and b are in S, the difference a− b is also in S.

If the subgroup contains only 0, we say it is the zero subgroup.

(2.5) Proposition Let S be a non-zero subgroup of integers. Then if c is any number in S, and

t is any integer, the integer multiple tc of c is also in S.

Proof We first show that −c is also in S. We know that S contains 0, and as S is a subgroup,

it also contains 0 − c = −c. We prove by induction on n that S contains nc for any positive

integer n. This is certainly true when n = 1. Suppose then that S contains kc, where k is an

integer ≥ 1. As S therefore contains kc and −c, it contains

kc− (−c) = (k + 1)c,

as required. This proves that S contains nc for all positive integers n. But S contains the

negative of each of its members and so −(nc) = (−n)c is also in S. Since nc and (−n)c are in

S for any positive integer n, our proposition follows.

We would like now to give a description of all non-zero subgroups of Z. To do this, we

must invoke another mathematical principle, known as the well ordering principle.

Axiom (Well ordering principle) Let S be a non-empty subset of non-negative integers. Then S

contains a smallest member, m, say.

Note that if m is the smallest member of S, we have m ≤ x for all integers x in S.

(2.6) Theorem Let S be a non-zero subgroup of integers. Then S contains a smallest positive

integer and consists of all possible integer multiples of this smallest positive integer.
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Proof As S is not the zero subgroup, it contains a number, c, say, different from 0 and hence also

−c, by Proposition 2.5. Now exactly one of c and −c is positive, and as each of these numbers

is in S, we see that S contains positive numbers. Let T be the set of positive numbers in S. We

know now that T is non-empty and thus by the well-ordering principle, it contains a smallest

positive integer, m, say. We will show that S consists of all integer multiples of m. Note that

by Proposition 2.5, S certainly contains all integer multiples of m.

Let b be any integer in S. By Theorem 2.3 (the division algorithm), there exist integers q

and r with 0 ≤ r < m and

b = qm + r.

Now we know by Proposition 2.5 that qm is in S, as it is an integer multiple of m. Thus, as S

is a subgroup, containing b and qm,

b− qm = r

is in S. Thus r is in S. As 0 ≤ r < m, the definition of m as the smallest positive integer in S

implies that r must be 0. Hence b = qm is an integer multiple of m, as required.

Given a positive integer m, let mZ denote the set of all integer multiples of m. So,

mZ = { 0,±m,±2m,±3m, . . . }.

It is easy to check that mZ is a subgroup of Z, whose smallest positive member is m. Conversely,

Theorem 2.6 shows that all subgroups of Z have this form.

(2.7) Definition Let b and c be any two integers. A positive integer d is called the greatest

common divisor (gcd) of b and c if d divides both b and c and is the largest integer with this

property. We often write gcd(b, c) for the gcd of b and c.

We first look at the concept of gcd from a theoretical point of view and then proceed to a

very efficient method for finding the gcd.

(2.8) Theorem Let b and c be any two non-zero integers and let d be their gcd. Then there exist

integers s and t with

d = sb + tc.

Proof Consider the subset S of Z consisting of all integers of the form

xb + yc,
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where x and y run independently through all the integers. We claim that S is a subgroup of Z.

To prove this, take two elements xb + yc and x′b + y′c in S. Then the difference

xb + yc− (x′b + y′c) = (x− x′)b + (y − y′)c = x′′b + y′′c,

where x′′ = x− x′, y′′ = y − y′, is certainly an element of S. Thus, S is a subgroup of Z. It is

certainly non-zero as it contains

b = 1b + 0c and c = 0b + 1c.

By Theorem 2.6, S = dZ for some positive integer d. Thus, since d is in S,

d = sb + tc

for certain integers s and t. Moreover, as both b and c are in S,

b = du, c = dv

for certain integers u and v. This shows that d is a common divisor of b and c. Furthermore,

if e is a common divisor of b and c, e then divides sb and tc for any s and t. Hence e divides

sb + tc = d. Thus e is a divisor of d and it follows that d must be the gcd of b and c.

Note that if s and t have been found as above, then for any integer value of r, the numbers

s′ = s + rc, t′ = t− rb

have the property that d = s′b + t′c, so that there are infinitely many possibilities for s and t.

The following result follows from the proof above. It is not obvious from the definition of

gcd that such a result should hold.

(2.9) Corollary Let b and c be any two non-zero integers. Then any common divisor of b and c

divides their gcd.

Now Theorem 2.8 is an existence theorem and it gives no indication of how to find the gcd

or of how to find the two integers s and t. Luckily a practical procedure has existed since the

time of Euclid. It uses a repeated process of division and formation of remainder, as in Theorem

2.3.

We may suppose that our integers b and c are both positive. Dividing c into b by the

division algorithm gives

b = cq1 + r1,
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where 0 ≤ r1 < c. Any common divisor of b and c divides r1, as we see from the equation above.

Thus gcd(b, c) is certainly a divisor of both r1 and c, which implies that gcd(b, c) ≤ gcd(c, r1).

Likewise, any common divisor of c and r1 divides b and thus gcd(c, r1) ≤ gcd(b, c). These two

inequalities imply that

gcd(b, c) = gcd(c, r1).

This is important, for it shows that we can replace the problem of finding gcd(b, c) by the

problem of finding gcd(c, r1), which is easier, as c ≤ b and r1 < c. We continue the division

process, dividing r1 into c:

c = r1q2 + r2,

where 0 ≤ r2 < r1. As above,

gcd(c, r1) = gcd(r1, r2) = gcd(b, c).

Continue, dividing the new remainder into the previous remainder.

r1 = r2q3 + r3
...

...
...

rn−2 = rn−1qn + rn

rn−1 = rnqn+1

Eventually, the remainder must become 0, say when rn−1 is divided by rn, since the non-negative

remainders get smaller at each stage and cannot continue decreasing indefinitely. The argument

given above shows that

gcd(b, c) = gcd(c, r1) = gcd(r1, r2) = . . . = gcd(rn−1, rn).

However, the equation rn−1 = rnqn shows that rn divides rn−1 and so gcd(rn−1, rn) = rn. Thus

the gcd of b and c is rn, which is the last non-zero remainder in the repeated division process.

To find the integers s and t so that d = sb + tc is often rather laborious. It can be done

working from the botttom or from the top. To explain working from the bottom, recall that rn,

the last non-zero remainder is the gcd. Now

rn = rn−2 − rn−1qn

expresses rn in terms of previous remainders. Next,

rn−1 = rn−3 − rn−2qn−1

and substituting this value into the previous equation, we get

rn = rn−2 − (rn−3 − rn−2qn−1)qn = rn−2(1 + qn−1qn)− qnrn−3.
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Then we substitute for rn−2 and obtain an expression for rn in terms of rn−3 and rn−4. Con-

tinuing in this way, we express the gcd rn in terms of two successive remainders and eventually

work up to b and c.

For computational purposes, it seems to be easier to work from the top. Our first three

divisions give

r1 = b− cq1

r2 = c− r1q2

r3 = r1 − r2q3

and hence substituting

r2 = c− (b− cq1)q2

r2 = −bq2 + c(1 + q1q2)

r3 = b− cq1 + bq2q3 − c(q3 + q1q2q3)

r3 = b(1 + q2q3)− c(q1 + q3 + q1q2q3).

This process may be continued until rn is reached. When a calculator is used, only a small

number of memory locations are needed to keep the various quotients and remainders.

Let b and c be non-zero integers and let d be their gcd. Let

b′ =
b

d
, c′ =

c

d
.

It is easy to see that the gcd of b′ and c′ must be 1. For, if the gcd is e, then de is a common

divisor of b and c and hence must be d. Numbers whose gcd is 1 are said to be relatively prime.

We want now to make use of Theorem 2.8 to investigate properties of relatively prime

integers.

(2.10) Theorem Let b and c be relatively prime integers. Suppose that b divides a product ce,

where e is some integer. Then b divides e.

Proof As b and c are relatively prime, their gcd is 1 and thus by Theorem 2.8, there exist integers

s and t with

1 = sb + tc.

Multiplying this equation by e, we obtain e = sbe + tce. By hypothesis, b divides ce and hence

tce. But b also divides sbe and thus divides sbe + tce = e, which gives us what we want.

(2.11) Corollary Let b and c be relatively prime integers. Suppose that b divides a product cne,

where n is a positive integer and e is some integer. Then b divides e.
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Proof We see that b divides c(cn−1e) and hence by Theorem 2.10, b divides cn−1e. Then we

deduce that b divides cn−2e. Continuing in this way, we eventually arrive at the fact that b

divides e, as required (this proof may be set up properly by induction).

It has been well known since the time of Pythagoras’s Theorem that
√

2 is not a rational

number. This means that we cannot find integers b and c so that(
b

c

)2

= 2.

This fact shows that there are numbers naturally occurring in mathematics that are not simple

fractions (or equivalently, eventually repeating decimals). It is possible to generalize the proof

of this result, by making use of Corollary 2.11.

(2.12) Theorem Let d be an integer and let n be a positive integer. Suppose that d is the n-th

power of a rational number. Then d is the n-th power of an integer.

Proof Suppose that d is the n-th power of the rational number
b

c
, where b and c are integers. By

removing common factors of b and c (so that
b

c
is written in its lowest terms), we may assume

that b and c are relatively prime and that c > 0. We claim now that in this case c must be 1.

For we have

d =
(

b

c

)n

implying that bn = cnd.

This shows that c certainly divides bn = bn1. Hence c divides 1, by Corollary 2.11. As c > 0,

this forces c to equal 1, as required and thus d = bn is the n-th power of an integer.

This result implies that the n-th roots of integers are irrational unless the integer is itself

the n-th power of an integer.

Example The n-th root of 2 is irrational for n ≥ 2. For if there is a rational number whose n-th

power is 2, by what we have proved, there is also a positive integer with this property. This is

impossible as the n-th power of a positive integer is either 1 or is at least 4.

Next, we move on to consider properties of primes and the factorization of integers into

the product of primes.

(2.13) Definition An integer p > 1 is said to be a prime if its only integer divisors are ±p and

±1.

Notice that 2 is the only even prime. The prime numbers are difficult to enumerate

systematically, but the first few are 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43.
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Now let p be a prime integer. Then the only positive integers that divide p are 1 and p.

Consequently, if b is any non-zero integer, the gcd of b and p is either 1, in which case b and

p are relatively prime, or the gcd is p, in which case p divides b. We can now obtain a basic

property of primes.

(2.14) Theorem Let p be a prime integer. Suppose that p divides a product bc, where b and c

are integers. Then p divides b or p divides c.

Proof If p divides b, we are finished. Otherwise, if p does not divide b, b and p are relatively

prime and then it follows from Theorem 2.10 that p divides c.

A straightforward extension of the argument above shows that if a prime p divides a

product b1 · · · bn of n integers, it divides at least one of the integers bi.

We are now in a position to prove what may be called the fundamental theorem of arith-

metic. This is the statement that any integer may be factorized into a product of prime numbers

and this factorization is essentially unique. While this fact is probably known intuitively to most

educated people, it was not until the work of Gauss in 1801 that a convincing proof of the the-

orem was first given.

(2.15) Theorem Let b > 1 be an integer. Then b may be expressed as the product of prime

integers. Furthermore, if we write b = p1p2 · · · pt, where p1, . . . , pt are primes satisfying p1 ≤
p2 ≤ . . . ≤ pt, this decomposition is unique.

Proof We first prove by induction on the size of b that b is a product of primes. If b is itself a

prime, we are finished. If b is not a prime, it may be written as a product

b = cd,

where c and d are integers satisfying 1 < c < b, 1 < d < b. By induction, c and d are products

of primes, say,

c = p1 · · · ps, d = q1 · · · qt,

and then

b = p1 · · · psq1 · · · qt

is expressed as a product of primes.

The harder part of the proof is to show the uniqueness of the factorization. Suppose that

we have two prime factorizations

b = r1 · · · rm = s1 · · · sn,
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where each ri and sj is a prime and we may assume that r1 ≤ . . . ≤ rm and s1 ≤ . . . ≤ sn. Then

the prime r1 divides the product s1 · · · sn and by our remarks following the proof of Theorem

2.14, we see that r1 divides at least one of s1, . . . , sn, say, sj . Since sj is a prime and r1 divides

it, r1 = sj . This shows in particular that r1 ≥ s1. On the other hand, repeating the argument

with s1 in place of r1, we must obtain s1 ≥ r1. These two inequalities imply that r1 = s1.

Cancelling r1 and s1 from each side of the equation for b, we get

r2 · · · rm = s2 · · · sn.

We continue this process, showing that r2 = s2, and so on, as required.

We can use the prime factorization of integers to investigate the gcd of integers in a

theoretical manner. Let b and c be positive integers. Write the prime factorizations of b and c

in the form

b = pr1
1 . . . prm

m , c = ps1
1 . . . psm

m ,

where p1, . . . , pm are different primes and at least one of the indices ri, si is positive for i = 1,

. . . , m (but we allow the possibility that some indices are 0). Then set ti equal to the minimum

of ri and si for i = 1, . . . , m. It is quite straightforward to see that

pt1
1 . . . ptm

m

is the greatest common divisor of b and c.

Example The gcd of 23327513 and 22337211 is easily seen to be 223272.

The Euclidean algorithm method for finding the gcd is much more efficient in practice,

since there is in general no easy way to obtain the prime factorization of an integer.
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