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ABSTRACT

Let λ be a 2-regular partition of n into two parts and let Dλ denote the

corresponding irreducible F2Σn-module. We say that Dλ is of quadratic type if

there is a non-degenerate Σn-invariant quadratic form defined on this module.

In this paper, we show that Dλ is not of quadratic type precisely when the

smaller part of λ is a power of 2, say 2r, where r ≥ 0, and n ≡ k mod 2r+2,

where k is one of the 2r consecutive integers 2r+1 + 2r − 1, . . . , 2r+2 − 2.

Let Σn denote the symmetric group of degree n and let F2 denote the field

of order 2. We say that a partition λ of n is 2-regular if λ has no repeated

parts. Given a 2-regular partition of n, there is an absolutely irreducible F2Σn-

module Dλ that corresponds to λ. Moreover, every irreducible F2Σn-module

is isomorphic to some Dµ for a suitable 2-regular partition µ of n. The module

D(n) is the trivial module. Provided λ is different from (n), there is a non-

degenerate Σn-invariant alternating bilinear form fλ, say, defined on Dλ×Dλ.

We say that Dλ is of quadratic type if there is a non-degenerate Σn-invariant

quadratic form defined on Dλ, whose polarization is fλ.

A description in terms of the parts of λ of those Dλ that are not of

quadratic type does not appear to be known at present, and we may expect

any complete solution of the quadratic type problem to involve some delicate

combinatorial considerations. The purpose of this paper is to decide when Dλ

is not of quadratic type in the case that λ is a two-part partition, that is, a

partition of n into exactly two non-zero parts. Our main result is that, when λ

is a two-part partition, Dλ is not of quadratic type precisely when the smaller

part of λ is a power of 2, say 2r, where r ≥ 0, and n ≡ k mod 2r+2, where k

is one of the 2r consecutive integers 2r+1 + 2r − 1, . . . , 2r+2 − 2.
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An investigation of the problem of quadratic type involves some discus-

sion of integral lattices. We first recall that, given a partition λ of n, the Specht

lattice Sλ is a sublattice of the permutation lattice Mλ, defined by the permu-

tation action of Σn on the cosets of the Young subgroup that corresponds to

λ. Restriction of the standard inner product on Mλ defines a positive definite

Σn-invariant integral symmetric bilinear form Fλ, say, on Sλ × Sλ. Provided

that λ 6= (n), Fλ is even, meaning that Fλ(u, u) is an even integer for all u in

Sλ. We may thus define an integral quadratic form Qλ on Sλ by setting

Qλ(u) = 2−1Fλ(u, u).

It is clear that Fλ is the polarization of Qλ.

Let S
λ

denote the F2Σn-module defined by

S
λ

= Sλ/2Sλ.

Given u ∈ Sλ, let u denote the image of u in S
λ
. As Fλ is even, we may define

an alternating bilinear form

Fλ : S
λ × S

λ → F2

by setting

Fλ(u, v) = Fλ(u, v) + 2Z.

If λ is 2-regular, it is well known that the radical radFλ of Fλ is the unique

maximal F2Σn-submodule of S
λ

and

S
λ
/radFλ

∼= Dλ.

In order to discuss the problem of whether Dλ is of quadratic type or

not, it will be convenient to take a more general point of view and develop

a theory for all finite groups. Thus, let G be a finite group and let L be a

ZG-lattice. Let F : L× L → Z be a G-invariant non-degenerate even positive

definite symmetric bilinear form. We may scale F so that it is not a non-

trivial integral multiple of any other integral symmetric bilinear form defined

on L×L. We then define a quadratic form Q on L by Q(u) = 2−1F (u, u). Let

L = L/2L and let F be the corresponding alternating bilinear form defined on
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L×L. Let R denote the radical of F . We suppose from now on that R is the

unique maximal F2G-submodule of L. Then L/R is an irreducible self-dual

F2G-module and our problem is to decide whether or not it is of quadratic

type. We first define a quadratic form Q on L by setting

Q(u) = Q(u) + 2Z.

We define the singular radical R0 of Q by

R0 = {u ∈ R : Q(u) = 0}.

We now state without proof the following elementary properties of R0.

LEMMA 1. R0 is an F2G-submodule of R. We either have R0 = R or R0

has codimension 1 in R and R/R0 is the trivial one-dimensional F2G-module.

It is straightforward to see that we may define a quadratic form Q0 on

L/R0 by

Q0(u + R0) = Q(u).

LEMMA 2. Under the given assumptions, L/R is of quadratic type if

and only if R = R0. If L/R is not of quadratic type, L has a trivial F2G-

composition factor.

Proof. If R = R0, the result is clear from our observation above. Con-

versely, suppose that R 6= R0. Then certainly L has a trivial F2G-composition

factor, and our assumption on the uniqueness of R as a maximal submodule

implies that R/R0 is the socle of L/R0. It follows from Lemma 1.3 of [2] that

L/R is not of quadratic type.

Let n be the rank of the lattice L. By the theory of the Smith nor-

mal form for integral matrices, there exist integral bases {x1, . . . , xn} and

{y1, . . . , yn} of L and positive integers ri for 1 ≤ i ≤ n such that

F (xi, yj) = riδij ,

where δij is the Kronecker delta. Let ν be the standard 2-adic valuation on

the integers. We may order our bases so that

ν(r1) ≤ . . . ≤ ν(rn),
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and our scaling of F implies that ν(r1) = 0.

For each integer k ≥ 0, we set

Lk = {x ∈ L : F (x, u) ∈ 2kZ for all u ∈ L}

and

Lk = (Lk + 2L)/2L ∼= Lk/2Lk−1.

Clearly, L0 = L and it is straightforward to see that L1 = R.

LEMMA 3. We may define a symmetric bilinear form F 1 on R×R by

F 1(u, v) = F 1(u + 2L, v + 2L) = 2−1F (u, v) + 2Z

for all u and v in R. The radical of F 1 is L2.

Proof. We first show that F 1 is well defined. Thus, given u, v in R,

suppose that

u = u + 2L = u1 + 2L, v = v + 2L = v1 + 2L,

where u, u1, v, v1 are all in L1. Then we can write u = u1 + 2x, v = v1 + 2y

where x and y are in L. We therefore have

F (u, v) = F (u1, v1) + 2F (u1, y) + 2F (x, v1) + 4F (x, y).

Since u1 and v1 are in L1, F (u1, y) ∈ 2Z and F (x, v1) ∈ 2Z, and hence

2−1F (u, v) + 2Z = 2−1F (u1, v1) + 2Z.

This implies that F 1 is well defined, and it is clearly bilinear and symmetric.

Suppose that u ∈ R is in the radical of F 1, and let u = u + 2L, where

u ∈ L1. Then, by definition,

F (u, v) ∈ 4Z

for all v ∈ L1. Recall now the integral bases {x1, . . . , xn} and {y1, . . . , yn} of

L. Suppose that there are exactly c indices i such that ν(ri) = 0 and exactly

d indices j such that ν(rj) = 1. Then we easily verify that

{2x1, . . . , 2xc, xc+1, . . . , xn} and {2y1, . . . , 2yc, yc+1, . . . , yn}
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are integral bases for L1. We may therefore write

u = 2a1x1 + · · ·+ 2acxc + ac+1xc+1 + · · ·+ anxn

for unique integers a1, . . . , an. Then since F (u, yj) ∈ 4Z for c+1 ≤ j ≤ c+d,

we see that aj ∈ 2Z for c+1 ≤ j ≤ c+d. It follows that u = u+2L is a linear

combination of the elements xj + 2L where j > c + d. On the other hand, it

is elementary to check that the elements xj + 2L where j > c + d form a basis

of L2. Moreover, any element of L2 is certainly in the radical of F 1. Thus we

have identified the radical of F 1, as required.

LEMMA 4. We have R = R0 if and only if F 1 is alternating.

Proof. Let Q be the quadratic form previously defined on L. Then Q

vanishes on R precisely when

2−1F (u, u) ∈ 2Z

for all u ∈ L1 and this is the condition for F 1 to be alternating.

The following two lemmas must be well known, but we provide a proof

in one case.

LEMMA 5. Let W be an F2G-module and let f : W × W → F2 be a

non-degenerate G-invariant symmetric bilinear form. Suppose that f is not

alternating. Then

W0 = {w ∈ W : f(w,w) = 0}

is an F2G-submodule of codimension 1 in W , and W/W0 is the trivial F2G-

module.

LEMMA 6. Let W be an F2G-module and let f : W × W → F2 be a

non-degenerate G-invariant symmetric bilinear form. Suppose that the trivial

one-dimensional F2G-module occurs with odd multiplicity as a composition

factor of W . Then dim W is odd and hence f is not alternating.

Proof. We proceed by induction on dim W , the result being trivial when

dim W = 1. Let M be an irreducible F2G-submodule of W . As M is irre-

ducible, we have two possibilities: either M ≤ M⊥ or else W = M ⊥ M⊥.
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We first consider the case that M ≤ M⊥. Then there is an F2G-module

isomorphism W/M⊥ ∼= M∗, where M∗ is the (irreducible) dual space of M .

Moreover, f induces a non-degenerate G-invariant symmetric bilinear form on

(M⊥/M)× (M⊥/M). Clearly, as dim M = dim M∗, we have

dim W ≡ dim (M⊥/M) mod 2.

Since M is the trivial module if and only if M∗ is the trivial module, it follows

that M⊥/M contains the trivial F2G-module as a composition factor with odd

multiplicity. Hence dim (M⊥/M) is odd by induction and thus dim W is odd

also.

In the second case, we have W = M ⊥ M⊥. If M⊥ contains an irre-

ducible F2G-submodule N with N ≤ N⊥, we return to the first case and are

finished by induction. We may therefore assume that

W = N1 ⊥ . . . ⊥ Nr

is the orthogonal direct sum of irreducible F2G-submodules Ni. If Ni is a

non-trivial summand, f must be alternating on Ni by Lemma 5. Thus dim Ni

is even. Consequently, dim W ≡ s mod 2, where s is the number of trivial

composition factors, which implies that dim W is odd, as required.

We can now describe our main tool for investigating the quadratic type

problem.

LEMMA 7. Assume the notation and hypotheses previously introduced.

Suppose that the trivial F2G-module occurs with multiplicity 1 as a composi-

tion factor of L. Then L/R is not of quadratic type if and only if the trivial

F2G-module occurs as a composition factor of L1/L2.

Proof. We know that L/R is of quadratic type if and only if R = R0,

and Lemma 4 shows that R = R0 if and only if F 1 is alternating. Now if

F 1 is not alternating, Lemma 5 shows that the trivial F2G-module occurs

as a composition factor of L1/L2. If F 1 is alternating, Lemma 6 implies

that the trivial F2G-module occurs as a composition factor of L1/L2 with

even multiplicity, 2r, say. As the trivial F2G-module occurs as a composition
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factor of L with multiplicity 1, it is clear that r must be 0 and the lemma is

proved.

We turn to considering how the theory developed in the previous section

relates to the modules Dλ of Σn. We may apply Lemma 7 whenever we

know that the trivial module D(n) occurs with multiplicity 1 as a composition

factor of S
λ
. Now James, [3, Theorem 24.15], has proved that when λ is a

two-part partition, D(n) has multiplicity at most 1 as a composition factor of

S
λ
. Moreover, the multiplicity is 1 if and only if dim S

λ
is odd. If we take

λ = (n−m,m), where 2m < n, then

dim S
λ

=
(

n

m

)
−

(
n

m− 1

)
≡

(
n + 1

m

)
mod 2.

Thus D(n) is a composition factor of S
(n−m,m)

precisely when
(
n+1
m

)
is odd.

A theorem of Schaper, [4] (see also [1], for example), provides the ma-

chinery we need to check whether D(n) occurs as a composition factor of

S
(n−m,m)

1 /S
(n−m,m)

2 . We use the language of the Grothendieck group to state

the theorem. Thus, given an F2Σn-module M , we let [M ] denote its image in

the Grothendieck group of F2Σn-modules. The elements [Dλ], where λ runs

over the 2-regular partitions of n, form a free basis of the group. We can now

state Schaper’s theorem in the form that is most useful to us.

LEMMA 8. In the Grothendieck group of F2Σn-modules, we have the

equality

∑
i≥1

i
[
S

(n−m,m)

i /S
(n−m,m)

i+1

]
=

m−1∑
i=0

ν((n + 1−m− i)/(m− i))
[
S

(n−i,i)]
.

We refer to this equality as Schaper’s formula. In view of our earlier work,

the formula shows that D(n−m,m) is not of quadratic type precisely when the

coefficient of
[
D(n)

]
on the right hand side above is 1. Therefore, it is a

purely combinatorial and numerical matter to solve our problem, but we use

some representation-theoretic ideas, such as branching theorems, to reduce

our dependence on Schaper’s theorem.

We begin by looking at those two-part partitions λ whose second part is

a power of 2, since these provide the Dλ that are not of quadratic type.
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LEMMA 9. Let n = (2k+1)2r+1 +2r−1, where k and r are non-negative

integers, and let λ = (n− 2r, 2r). Then Dλ is not of quadratic type.

Proof. It is straightforward to check that

ν(n + 1− 2r − i) = ν(2r − i)

for 1 ≤ i < 2r, while

ν(n + 1− 2r) = r + 1 = ν(2r) + 1.

Thus [D(n)] occurs exactly once in Schaper’s formula, which implies that Dλ

is not of quadratic type.

We remark that Lemma 9 can be proved by more elementary means.

For, under the conditions of the lemma, S
λ

has only the composition factors

Dλ and D(n), by James’s results, [3, Theorem 24.15]. Thus dim R = 1 and, as

we can identify R explicitly in this case, it is elementary to check that R0 = 0.

Let Dλ ↓Σn−1 denote the restriction of Dλ to Σn−1.

The following lemma is a consequence of Lemma 1.2 of [2].

LEMMA 10. Suppose that Dλ is of quadratic type. Let λ′ be a partition

of n − 1 such that Dλ′ occurs with odd multiplicity in Dλ ↓Σn−1 . Suppose

moreover that D(n−1) is not a composition factor of Dλ ↓Σn−1 . Then Dλ′ is

also of quadratic type.

LEMMA 11. Suppose that n satisfies

k2r+1 + 2r ≤ n ≤ (k + 1)2r+1 − 2

for some non-negative integers k and r, and let λ = (n − 2r, 2r). Then the

composition factors of Dλ ↓Σn−1 include Dλ′ , where λ′ = (n−1−2r, 2r), with

multiplicity 1, and do not include D(n−1).

Proof. Theorem 3.1 of [5] shows that when n is even, Dλ ↓Σn−1= Dλ′ ,

and when n is odd, Dλ ↓Σn−1 contains Dλ′ with multiplicity 1. In the latter

case, Dλ ↓Σn−1 contains D(n−1) if and only if n ≡ −1 mod 2r+1. As no value

of n in our permitted range satisfies this congruence, the lemma follows.
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LEMMA 12. Suppose that n satisfies

(2k + 1)2r+1 + 2r − 1 ≤ n ≤ (2k + 2)2r+1 − 2

for some non-negative integers k and r, and let λ = (n− 2r, 2r). Then Dλ is

not of quadratic type.

Proof. Dλ is not of quadratic type when n = (2k + 1)2r+1 + 2r − 1,

by Lemma 9. Suppose, by way of contradiction, that there is some n in the

range specified above for which Dλ is of quadratic type. We may then assume

that n is the smallest such integer in the permitted range. By Lemma 11, the

composition factors of Dλ ↓Σn−1 include Dλ′ , where λ′ = (n−1−2r, 2r), with

multiplicity 1, and do not include D(n−1). It follows from Lemma 10 that Dλ′

is also of quadratic type, contradicting the minimality of n. This proves the

lemma.

The following result makes critical use of Schaper’s formula.

LEMMA 13. Suppose that n = k2r+2 + 2r+1 − 2 for some non-negative

integers k and r, and let λ = (n− 2r, 2r). Then Dλ is of quadratic type.

Proof. Let i be an integer satisfying 0 < i < 2r − 1. Then we easily see

that

ν(n + 1− 2r − i)− ν(2r − i) = ν(i + 1)− ν(i).

Furthermore, we also have

ν(n− 2r + 1)− ν(2r) = −r, ν(n− 2r+1 + 2) = ν(k) + r + 2.

We note also that each binomial coefficient
(
n+1

i

)
is odd for each i with 0 ≤

i ≤ 2r − 1. Thus
[
D(n)

]
occurs in

[
S

(n−i,i)]
with multiplicity 1 for each i in

this range. It follows that the coefficient of [D(n)] in the right hand side of

Schaper’s formula is

−r +
2r−2∑
i=0

(ν(i + 1)− ν(i)) + ν(k) + r + 2,

which is at least as large as 2. Our earlier remarks and Lemma 7 now imply

the result.
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LEMMA 14. Suppose that n satisfies

k2r+2 + 2r − 1 ≤ n ≤ k2r+2 + 2r+1 − 2

for some non-negative integers k and r, and let λ = (n− 2r, 2r). Then Dλ is

of quadratic type.

Proof. By Lemma 13, Dλ is of quadratic type when n = k2r+2+2r+1−2.

It follows from repeated restrictions, using Lemma 11, that Dλ is also of

quadratic type when k2r+2 + 2r − 1 ≤ n ≤ k2r+2 + 2r+1 − 3.

We can now obtain our first major result on the quadratic type of those

modules Dλ when λ is a two-part partition whose second part is a power of 2.

THEOREM 1. Let r be a non-negative integer and let λ = (n − 2r, 2r),

where 2r+1 < n. Then Dλ is not of quadratic type if and only if n ≡ k mod

2r+2, where k is one of the 2r consecutive integers 2r+1 +2r−1, . . . , 2r+2−2.

Proof. Suppose first that n ≡ k mod 2r+2 where k is one of 0, . . . ,

2r − 2. Then it is straightforward to see that the binomial coefficient
(
n+1
2r

)
is

even. It follows from our discussion after the proof of Lemma 7 that Dλ is of

quadratic type. Suppose next that n ≡ k mod 2r+2 where k is one of 2r − 1,

. . . , 2r+1− 2. Then Dλ is of quadratic type by Lemma 14. Now suppose that

n ≡ k mod 2r+2 where k is one of 2r+1− 1, . . . , 2r+1 + 2r − 2. Then we again

find that the binomial coefficient
(
n+1
2r

)
is even and it follows that Dλ is of

quadratic type in these cases. Lemma 12 shows that Dλ is not of quadratic

type when n ≡ k mod 2r+2, and k is any one of 2r+1 + 2r − 1, . . . , 2r+2 − 2.

Finally, when n ≡ 2r+2 − 1 mod 2r+2, the binomial coefficient
(
n+1
2r

)
is even

and it follows that Dλ is of quadratic type in this case. This exhausts all

possibilities and completes the proof.

We now solve the problem of deciding the quadratic type of Dλ when

the smaller part of λ is not a power of 2.

THEOREM 2. Let m ≥ 3 be an integer that is not a power of 2 and let

λ = (n−m,m) be a 2-regular partition of n. Then Dλ is of quadratic type.

Proof. We can find an integer k ≥ n such that the binomial coefficient(
k+1
m

)
is even. Then the module D(k−m,m) is of quadratic type for Σk. Now
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it follows from Theorem 3.1 of [5] that D(k−m,m) ↓Σk−1 contains D(k−m−1,m)

but does not contain D(k−1) (here we use the fact that m is not a power of 2).

Thus D(k−m−1,m) is also of quadratic type by Lemma 10. It follows thus by

k − n repeated restrictions that Dλ is of quadratic type.
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