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Let G be a finite group and let χ be an irreducible complex character of G. Let

D be a complex representation of G affording χ and let m(χ) denote the Schur

index of χ over the field Q of rational numbers. It is well known that m(χ) is a

divisor of the degree χ(1) of χ. When the extreme case m(χ) = χ(1) occurs, D(G)

is isomorphic to a finite subgroup of the multiplicative group of a division algebra.

See, for example, [H, pp.548-549]. This imposes severe restrictions on the structure

of D(G). For example, if p is an odd prime divisor of |D(G)|, a Sylow p-subgroup

of D(G) is cyclic, and a Sylow 2-subgroup of D(G) is either cyclic or generalized

quaternion.

Suppose now that G is π-separable, where π is a set of primes, and let H be

a Hall π-subgroup of G. Suppose also that H has an irreducible complex character

θ with the property that m(θ) = θ(1). We show in this paper that, modulo certain

exceptions related to the quaternion group of order 8, G has an irreducible character

χ with the property that m(χ) = θ(1) and χ(1) = sθ(1), where s is a π′-number.

Furthermore, the field of values Q(χ) of χ is contained in the field Q(θ). The

hypothesis that m(θ) = θ(1) is somewhat restrictive and it is certainly true that it

is not easy to construct non-linear characters θ with the desired property (see, for

example, [I, Theorem 10.16]) but the possibility that θ is linear is included, and our

main result in this case reduces to a theorem obtained by us in a previous paper,

[G, Theorem 1]. Another interesting possibility is that H has an image isomorphic

to a non-cyclic subgroup of the multiplicative group of the Hamiltonian quaternions
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H. In this case, H has a real-valued complex character θ with θ(1) = 2 = m(θ)

and so, modulo the exceptions which we will describe later, the hypotheses of our

theorem apply. We also feel that, without any specific information about how H is

embedded in G, it is unlikely that we can make any far reaching conclusions about

properties of the characters of G on the basis only of properties of characters of H,

unless we impose some fairly tight conditions onto these characters of H.

We now proceed to derive our main results. We require the following general

property of the Schur index. A proof of the first part of the result we quote is given

in [I, Lemma 10.4], and a proof of the second part can be modelled on the argument

given there.

LEMMA 1. Let H be a subgroup of the group G and let ψ and θ be irreducible

characters of H and G, respectively. Then

m(θ) divides m(ψ)|Q(ψ, θ) : Q(θ)|[ψG, θ]

and

m(ψ) divides m(θ)|Q(ψ, θ) : Q(ψ)|[ψ, χH ].

The next result we need is given as Problem 10.15 in [I, p.173]. We provide a proof

on the basis of Lemma 1 above.

LEMMA 2. Let θ be an irreducible character ofG and suppose thatm(θ) = θ(1).

Let H be a subgroup of G and let ψ be an irreducible constituent of θH . Then all

the irreducible constituents of θH are Galois conjugate to ψ over Q(θ). Moreover,

m(ψ) = ψ(1).

Proof. Set [ψ, θH ] = [ψG, θ] = c and |Q(ψ, θ) : Q(θ)| = r. Let σ1 = 1, . . . , σr

be all the Galois automorphisms of Q(ψ, θ) over Q(θ). It follows then that ψ = ψσ1 ,

. . . , ψσr are different irreducible constituents of θH and each has multiplicity c.

Thus we have the inequality

θ(1) ≥ ψ(1)cr.

On the other hand,

m(θ) divides m(ψ)rc
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by Lemma 1. Since m(ψ) divides ψ(1), we deduce that m(θ) divides ψ(1)cr. Our

inequality above implies now that m(ψ) = ψ(1) and

θH = c(ψσ1 + · · ·+ ψσr ),

as required.

Our next result is a consequence of what has been mentioned in the introduc-

tion. There is more than one proof available, and we give one that occurs naturally

in the theory of Frobenius complements.

LEMMA 3. Let D be a faithful irreducible complex representation of the group

G with character θ. Suppose that m(θ) = θ(1). Let p be a prime divisor of |G|. Then

a Sylow p-subgroup of G is cyclic if p is odd, and is cyclic or generalized quaternion

if p = 2. If q and r are different prime divisors of |G|, any subgroup of G of order

qr is cyclic.

Proof. Let H be a proper subgroup of G. It follows from Lemma 2 that

θH does not contain the principal character 1H . We deduce that D(G) is a linear

group isomorphic to G in which no non-identity element fixes a non-zero vector. The

lemma now follows from [H, Lemma 8.12, p.502].

Our next lemma must be well known, but we include a proof for the sake of

completeness.

LEMMA 4. Let S be either a dihedral, semi-dihedral or generalized quaternion

2-group. Suppose furthermore that S is not a quaternion group of order 8. Then

Aut(S) is a 2-group.

Proof. Our hypotheses imply that S has a unique cyclic subgroup of index 2,

R, say. R is thus characteristic in S. Suppose, if possible, that σ is an automorphism

of S of order r, where r is an odd prime. Let x be a generator of R. Then as Aut(R)

is a 2-group, σ(x) = x. Now by a well known result in the theory of p-groups,

σ induces an automorphism of order r of the quotient group S/Φ, where Φ is the

Frattini subgroup of S. Since S/Φ has order 4, r can only be 3 and σ can have no
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non-trivial fixed points in its action on S/Φ. However, xΦ is certainly a non-trivial

fixed point of σ, since x 6∈ Φ. This is a contradiction and the lemma is proved.

The following result plays an important role in the proof of our main theorem.

LEMMA 5. Let N be a normal Hall subgroup of the group G. Suppose that

N has a faithful irreducible complex character ψ satisfying m(ψ) = ψ(1). Suppose

also that N contains its centralizer in G. Then the inertia subgroup IG(ψ) of ψ in

G is N , unless possibly |IG(ψ) : N | = 3 and a Sylow 2-subgroup of N is isomorphic

to a quaternion group of order 8.

Proof. Set I = IG(ψ). By a theorem of Gallagher, [I, Lemma 13.3 and

Corollary 13.4], we may extend ψ to a character φ of I satisfying Q(φ) = Q(ψ). We

claim that

m(φ) = m(ψ) = ψ(1) = φ(1).

This follows since, from the first part of Lemma 1, m(φ) divides m(ψ), while from

the second part of Lemma 1, m(ψ) divides m(φ). We note furthermore that, since

ψ is assumed to be faithful and N contains its centralizer in G, φ is also faithful.

We will now show that if |I| = p|N |, where p is a prime, then p = 3 and a Sylow

2-subgroup of N is quaternion of order 8. We will also show that we cannot have

|I| = 9|N |. Suppose then that |I| = p|N |, and let g be an element of order p in I.

Let q be any prime divisor of |N |. By the Frattini argument, g normalizes a Sylow

q-subgroup Q of N . Clearly, either g centralizes Q or it induces by conjugation

an automorphism of order p of Q. Suppose first that q = 2. Then Q is either

cyclic or generalized quaternion. Now Lemma 4 shows that Q does not admit an

automorphism of order p unless p = 3 and Q is isomorphic to a quaternion group

of order 8. Thus g centralizes Q in this case, with one possible exception. Suppose

next that q is an odd prime. Then g normalizes the unique subgroup Q1, say, of

order q in Q. If g does not centralize Q, it does not centralize Q1, since any q′-

automorphism of a cyclic q-group acts non-trivially on the subgroup of order q. But

if g does not centralize Q1, it follows that the subgroup of I of order qp generated

by Q1 and g is not cyclic. This contradicts Lemma 3 applied in the context of I and
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the character φ. Thus g centralizes Q. We deduce that unless possibly we are in the

exceptional case described above, g centralizes a Sylow q-subgroup for each prime

divisor q of |N | and thus centralizes N , contrary to hypothesis. In the exceptional

case, we cannot have |I| = 9|N |, since the order of the automorphism group of a

quaternion group of order 8 is 24.

Suppose thatN is a normal subgroup of the groupG and let ψ be an irreducible

complex character of N . We define the semi-inertia subgroup SG(ψ) of ψ in G by

SG(ψ) = {g ∈ G : there is σ ∈ Gal(Q|G| : Q) with ψg = ψσ}.

Here, Q|G| denotes the field obtained by adjoining a primitive root of unity of order

|G| to the field of rational numbers and Gal(Q|G| : Q) is the associated Galois group.

Given that the action of Galois automorphisms on the irreducible characters of N

commutes with the conjugation action by G on the irreducible characters, it is easy

to see that SG(ψ) is a subgroup of G, and the inertia subgroup IG(ψ) is a normal

subgroup of SG(ψ). Furthermore, the quotient group SG(ψ)/IG(ψ) is isomorphic to

a subgroup of Gal(Q|G| : Q), and is hence abelian.

We are now in a position where we can enunciate our main theorem and

proceed to its proof.

THEOREM 1. Let G be a π-separable group and let H and M be a Hall

π-subgroup and a Hall π′-subgroup of G, respectively. Suppose that H has an

irreducible complex character θ satisfying m(θ) = θ(1). Suppose also that either

3 ∈ π or 2 6∈ π. Then θG contains a unique irreducible character χ = χθ with

[χM , 1M ] > 0. We have [χM , 1M ] = θ(1), Q(χ) ≤ Q(θ) and m(χ) = θ(1). Moreover,

there is a subgroup U of G that contains H and an irreducible character φ of U

with φH = θ and φG = χ. In addition, if θ′ is any irreducible character of H with

[χH , θ
′] > 0 and m(θ′) = θ′(1) = θ(1), then θ and θ′ are conjugate in the normalizer

of H in G.

Proof. We use induction on |G|. In the case that H = G, we clearly take χ to

be θ and then all the other conclusions are trivial. We may thus assume that H is
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a proper subgroup of G. Now since M complements H, we have

(θG)M = θ(1)ρM ,

where ρM is the regular character of M . We may thus choose an irreducible con-

stituent χ of θG satisfying [χM , 1M ] > 0, and we intend to show that χ is unique

and satisfies all the conclusions of the theorem above.

Let K be the kernel of χ. Since θ is an irreducible constituent of χH , by the

Frobenius reciprocity theorem, we may consider θ to be an irreducible character of

HK/K, which is a Hall π-subgroup of G/K. Now as χ is an irreducible character of

G/K, the result follows by induction if |K| > 1. We can therefore assume thatK = 1

and hence that χ is faithful. Let now L = Oπ′(G). As L ≤ M and [χM , 1M ] > 0,

we deduce that [χL, 1L] > 0. Clifford’s theorem now implies that L is in the kernel

of χ and is thus trivial. Let N = Oπ(G). Since G is π-separable and Oπ′(G) = 1,

N contains its centralizer in G. By Clifford’s theorem,

χN = r(ψ1 + · · ·+ ψt),

where r and t are positive integers and the ψi are a complete set of G-conjugate

irreducible characters of N . Since N ≤ H and θ is a constituent of χH , we may

take ψ = ψ1 to be a constituent of θN . Let I and S be the inertia and semi-inertia

subgroups of ψ in G. Clifford’s theorem implies that there is an irreducible character

φ of I with φN = rψ and φG = χ. Thus, since I ≤ S, ξ = φS is an irreducible

character of S that induces χ. Furthermore, it is well known and easy to prove that

Q(χ) = Q(ξ) and m(χ) = m(ξ).

Now m(θ) = θ(1) and ψ is an irreducible constituent of θN . Lemma 2 implies

that all irreducible constituents of θN are Galois conjugate over Q(θ). As Q(ψ, θ)

is a normal subfield of Q|G|, each automorphism of Q(ψ, θ) is the restriction of an

automorphism of Q|G| and it follows that all H-conjugates of ψ are Galois conjugate.

Thus H is a subgroup of S. Write

χS = ξ +
∑

i

aiξi,
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where the ξi are irreducible characters of S different from ξ. Since χH contains θ,

either ξH or some (ξi)H contains θ. Now ξI contains φ, by Frobenius reciprocity,

and since φN = rψ, we see that [ξN , ψ] ≥ r. However, as [χN , ψ] = r, we deduce

that [ξN , ψ] = r and [(ξi)N , ψ] = 0 for all i. Finally, since θN contains ψ, it must be

the case that ξH contains θ. Moreover, since H ≤ S, G = SM and hence T = S∩M

is a Hall π′-subgroup of S. By Mackey’s subgroup theorem, we have

χM = (ξG)M = (ξT )M

and since [χM , 1M ] > 0, we must have [ξT , 1T ] > 0.

Suppose now that S 6= G. Then we may apply induction to the character ξ of

S. In this case, we have [ξT , 1T ] = θ(1) and thus [χM , 1M ] = θ(1) also. Induction

also implies that m(ξ) = θ(1) and Q(ξ) ≤ Q(θ). Since χ = ξG, we must also have

Q(χ) ≤ Q(ξ) ≤ Q(θ).

Lemma 1 implies that m(ξ) divides m(χ) and thus θ(1) divides m(χ). However,

by Frobenius reciprocity, χ occurs with multiplicity θ(1) in the induced character

1G
M . Lemma 1 thus implies that m(χ) divides θ(1) and we deduce that we have the

equality m(χ) = θ(1), as required. Furthermore, by induction there is a subgroup U

of S containing H and an irreducible character τ of U with τH = θ and τS = ξ. But

then τG = χ and this proves that χ is induced from a proper subgroup in the manner

claimed in the theorem. To complete the proof in this case, let θ′ be an irreducible

character of H with [χH , θ
′] > 0 and m(θ′) = θ′(1) = θ(1). Clifford’s theorem

implies that there exists some g in G such that (θ′)N contains ψg, since (θ′)N must

consist of certain G-conjugates of ψ. Since m(θ′) = θ′(1), our earlier arguments

imply that H is contained in the semi-inertia subgroup of ψg. However, the semi-

inertia group of ψg is clearly Sg. Thus H and Hg are Hall π-subgroups of Sg, and

so are conjugate by an element of Sg, since Sg is π-separable. A straightforward

argument then shows that g = sn, for some s ∈ S and some n in the normalizer of

H in G. At this point, we may finish the conjugacy proof for θ and θ′ by induction

using an identical argument to that given in Theorem 1 of [G].

Finally suppose that S = G. It follows that I is normal in G, with abelian

quotient group. Furthermore, χN consists entirely of Galois conjugates of ψ in this
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case. Since Galois conjugate characters have the same kernel, and χ is faithful, it

follows that ψ is faithful. Under our hypothesis that either 3 ∈ π or 2 6∈ π, Lemma

5 now implies that I = N . Since this implies that G/N is abelian, it is clear that

G has a normal Hall π-subgroup. Thus N = H and χ = θG. Our theorem holds

trivially in this case and the proof is complete.

We will now describe two examples of exceptional behaviour relating to The-

orem 1 which show that some restrictive hypotheses are necessary to obtain the full

conclusions of the theorem.

(a) We take G = SL2(3) and H to be a Sylow 2-subgroup of G. Let θ be the

faithful irreducible character of H. Then m(θ) = θ(1) = 2, but θG contains

two irreducible characters χ1 and χ2 of degree 2 which satisfy

[(χ1)M , 1M ] = [(χ2)M , 1M ] = 1,

where M is a Sylow 3-subgroup of G.

(b) We take G to be the double cover of the symmetric group S4 whose Sylow 2-

subgroup H is a generalized quaternion group of order 16. Let θ be a faithful

irreducible character of H. Then, as before, m(θ) = θ(1) = 2. It is also true

that θG contains a unique irreducible constituent χ with [χM , 1M ] = 2, where

M is a Sylow 3-subgroup of G. However, χ(1) = 4 and χ is not induced by an

irreducible character of any proper subgroup of G containing H.

A key part of the proof of Theorem 1 is that the character θ of H is semi-

primitive over Q, meaning that there do not exist a proper subgroup L of H and

an irreducible character φ of L satisfying φH = θ and Q(φ) = Q(θ). This has the

consequence that if K is a normal subgroup of H and φ is an irreducible constituent

of θK , then the semi-inertia subgroup SH(φ) of φ is H. We will finish this paper

by considering a case of similar behaviour which leads us to an analogous version of

Theorem 1, although it is one where no Schur index hypothesis appears. We begin

by presenting some of the details which we will need. We omit formal proofs of the

next lemma, as it is surely well known.
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LEMMA 5. Suppose that D is a dihedral, semi-dihedral, or generalized quater-

nion 2-group. Suppose also that D is not dihedral of order 8. Then any abelian

normal subgroup of D is cyclic.

The next result is a straightforward consequence of this lemma.

LEMMA 6. Suppose that D is a dihedral, semi-dihedral, or generalized quater-

nion 2-group. Suppose also that D is not dihedral of order 8. Let θ be a faithful

irreducible complex character of D. Then θ is semi-primitive over Q.

Our next theorem can now be stated and proved.

THEOREM 2. Let G be a 2-solvable group and let H and M be a Sylow

2-subgroup and a Hall 2′-subgroup of G, respectively. Suppose that H has an

irreducible complex character θ such that H/ ker θ is either dihedral of order at

least 16 or semi-dihedral or generalized quaternion of order at least 32. Then θG

contains a unique irreducible character χ with [χM , 1M ] > 0. We have [χM , 1M ] = 2

and Q(χ) = Q(θ). Moreover, there is a subgroup U of G that contains H and an

irreducible character φ of U with φH = θ and φG = χ. Thus χ is monomial and

χ(1) = 2m, where m is odd. In addition, if θ′ is any irreducible character of H with

[χH , θ
′] > 0 and H/ ker θ ∼= H/ ker θ′, then θ and θ′ are conjugate in the normalizer

of H in G.

Proof. The proof is very similar to that of Theorem 1, so we will only provide

the most important details. We use induction on |G| and we will assume that G 6= H.

We choose an irreducible constituent χ of θG satisfying [χM , 1M ] > 0 and will show

that χ is unique and satisfies all the conclusions listed above. As in the previous

theorem, we may assume that χ is faithful and that O2′(G) = 1. Let N = O2(G).

Since G is 2-solvable and O2′(G) = 1, N contains its centralizer in G. By Clifford’s

theorem,

χN = r(ψ1 + · · ·+ ψt),

where r and t are positive integers and the ψi are a complete set of G-conjugate

irreducible characters of N . Since N ≤ H and θ is a constituent of χH , we may take

ψ = ψ1 to be a constituent of θN . Let S be the semi-inertia subgroup of ψ in G.
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Considering θ as a faithful irreducible character of H/ ker θ, θ is semi-primitive

over Q under the hypotheses we have adopted. It follows that H is contained in

S. Provided that S 6= G, we may argue by induction that the conclusions of the

theorem hold. We may therefore assume that S = G. As we have argued before,

ψ must be faithful in this case and thus N is isomorphic to a normal subgroup of

H/ ker θ. Our hypotheses imply that N is not elementary abelian of order 4 and

is hence either cyclic, dihedral, semi-dihedral or generalized quaternion. It follows

from Lemma 4 that Aut(N) is a 2-group unless N is a quaternion group of order

8. Since N contains its centralizer in G, and G is not a 2-group by our earlier

assumption, N must be quaternion of order 8. It follows immediately that |G| = 24

or 48, and we see in particular that H has order 8 or 16. Since these possibilities are

ruled out by our hypotheses, we deduce that we cannot have S = G and it follows

that our theorem is true.

It is of interest to observe that there are exceptions to the conclusions of

Theorem 2 if we relax the conditions on the order or structure of H/ ker θ. The

exceptions arise when O2(G) is either elementary abelian of order 4 or quaternion of

order 8. Our earlier examples following the proof of Theorem 1 are relevant to this

phenomenon and the following additional examples also illustrate the exceptional

behaviour.

(c) We take G = S4, and let H be a Sylow 2-subgroup of G. Then H is dihedral

of order 8. Let θ be the faithful irreducible character of H of degree 2. We

find that θG consists of two irreducible characters χ1 and χ2 each of degree 3.

The restriction of each χi to a Sylow 3-subgroup M of G contains 1M exactly

once.

(d) We take G to be GL2(3) and H to be a Sylow 2-subgroup of G. Then H is

semi-dihedral of order 16. Let θ be a faithful irreducible character of H of

degree 2. Then θ has degree 2 and is different from its complex conjugate

θ. Let M be a Sylow 3-subgroup of G. Then θG contains a rational-valued

irreducible character χ of degree 4 which satisfies [χM , 1M ] = 2. Moreover,

Q(χ) 6= Q(θ) and χH = θ+ θ, but θ is not conjugate to θ in the normalizer of
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H.

We conclude the paper by noting that Theorem 2 implies a connection between

the global properties of a finite 2-solvable group and homomorphic images of its

Sylow 2-subgroup.

COROLLARY 1. Let G be a finite 2-solvable group and let H be a Sylow 2-

subgroup of G.

(a) Suppose that each character of G is real-valued. Then H has no homomorphic

image that is semi-dihedral of order at least 32.

(b) Suppose that each irreducible character of G is 2-rational. Then H has no

homomorphic image that is dihedral of order at least 16, or semi-dihedral or

generalized quaternion of order at least 32.
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