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1 Introduction

Let p be a prime and let| = p?, wherea is a positive integer. LeG = G(Fy) be a Chevalley
group overly, with associated system of roatsand Weyl group/N. Steinberg showed in 1957
that G has an irreducible complex representation whose degree equapspiiue of |G|, [11].
This representation, now known as the Steinberg representation, has remarkable properties, which
reflect the structure 0B, and there have been many research papers devoted to its study. The
module constructed in [11] is in fact a right ideal in the integral group Adyof G, and is thus
a ZG-lattice, which we propose to call the Steinberg lattic&soflt should be noted that lattices
not integrally isomorphic to the Steinberg lattice may also afford the Steinberg representation, and
such lattices may differ considerably in their properties compared with the Steinberg lattice.

In this paper, we will describe th@&-invariant integral symmetric bilinear forrh defined on
the Steinberg lattice. Using the linear characters of a Syaubgroup ofG, we will find certain
elementary divisors of the Gram matiflixof f. These elementary divisors provide information
about the composition factors of the Steinberg lattice when it is reduced modulo any prime. In
Section 5, we provide two examples to see whether our knowledge of these elementary divisors is
sufficient for us to deduce a composition series for the modular reduction of the Steinberg lattice
whenG = By(Fq). We conclude the paper in Section 6 by showing that our results provide the
fullest information about the elementary divisors@fwhen G = A,(Fg), and we formulate a
conjecture about the composition factors of the modular reduction of the Steinberg lattice in this

case.

2000Mathematics Subject Classificati@@C15, 20C20, 20C33



2 The invariant integral symmetric bilinear form

We refer the reader to the book [1] for an exposition of the theory of Chevalley groupshLet
denote a set of positive roots . Given a rootr, we will write r > O if r is positive and < 0

if r is negative. Lefl denote the corresponding set of fundamental root®in G is generated
by root subgroups;, wherer ranges over. The root subgroupX;, wherer ranges ovem™,
generate a Sylovp-subgroup subgroup of G, of ordergV, whereN = |®*|. Let B denote the
normalizer ofU in G. The decomposition db into B, B—double cosets is labelled by the elements
of the Weyl groupWV. Specifically, there are elemermig of G defined for each elememt of W
such tha(G is the disjoint union of the double cosd8s,B, asw runs oveiW. We letU, denote
the subgroup) N (n;;*Uny,) of U. U is generated by those root subgroofsvherer > 0 and
w(r) > 0, and its order is]N ‘™), where/(w) is the number of positive roots that maps into
negative roots. There is a corresponding subgtgpmf U generated by those root subgroofps
wherer > 0 andw(r) < 0. U is factorized as a produtf, U,, of these two subgroups. We also

use the homomorphismfrom W onto the groug 1, —1} of two elements. We have

and we may identifye with the determinant function of the natural representatioW of
Consider the element

e= Z by e(w)ny,
beB we

in ZG. The right ideakZG is the Steinberg lattice which we will investigate in this paper. It will
be more convenient for our subsequent work to replace theZihg a principal ideal domailRR
of characteristic O which contains a primitiypeth root of unity. We will be more specific aboRt
later. We letl denote theRG-attice eRG which we shall call the Steinberg lattice o\rRrIn the
case thap = 2, we may takdr = Z. One of Steinberg’s main results, [11, Theorem 1], is that the
|U| elementseu, whereu runs over the elements bf, form a free basis df, and this fact enables
us to make calculations in

There is a naturdb-invariant non-degenerate symmetric bilinear fafmRGx RG— Rgiven
by

F(9,h) = &g,
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whereg andh are elements o6, andogn = 1 if g = h, 6gn = 0 otherwise. Restriction df to
| x | determines a non-degener&envariant symmetric bilinear form, and we shall now evaluate
F on the free basis dfjust described.

Givenu e U, we set

ow(u) = [{weW :nuun,t U}

Thusow(u) is the size of a non-empty subset\&f, with oy (1) = |W/|. In view of our earlier

discussion, we can also write
ow(u)=[{weW:ueUy}.
2.1Lemma Letu; andu, be elements dff. Then we have
F(ew, etp) = [Blow(uzu; ).

Proof: AsF is U-invariant, it suffices to show th&t(e,eu) = |Blow(u) for ue U. A typical
component oku has the fornbn,u, with coefficient+1. To calculatd- (e, eu), we need to know
when such an elemebin,u is expressible in the forb/'ny, whereb’ € B andx € W. We note
here than,u € By if and only if each of theéB| elementdn,u, asb runs overB, is also inBn.
This accounts for théB| factor in our formula forF (e eu). Suppose now that,u = b'ny for
someb’ € B andx € W. Since therBn,B = BB, it follows thatw = x and thusn,u = b'ny,.
As u hasp-power order andl is the unique Sylowp-subgroup oB, we deduce thay € U and
nwun,t € U. Thus there arey (u) elementsv € W for which Bnyu = Bn,. Sincee(w)? =1, itis
now straightforward to see thit(e,eu) = |B|ow(u). O

We rescale the restriction &f to | x | to produce &-invariant symmetric bilinear forni :
| x I — Rby setting

f(a,b) = |B| 'F(a,b)

forallaandbin|. LetU = {uy,...,un}, wherem= |U|. The Gram matriD, say, of f with
respect to the basey, 1 <i <m, of | hasi, j-entrch(ujufl). Thus all entries oD are positive
integers, and those on the main diagonal e¢\val

Let n be the rank of5. Write the positive roots o in the formr;, where 1<i < N, and take

ri,...,rn to be the fundamental roots. Letbe an element dfl. Following [1, Theorem 5.3.3],
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we may write, with the usual notation,

N
u:_uxﬁ(ti)v

where thet; € Fq. Provided that; # 0 for 1 <i <n, the argument of [11, Lemma 3] shows that

ow(u) = 1. Thusg"—"(q— 1)" entries ofD are equal to 1.

3 Calculations with the linear characters ofU

Let U, be the subgroup dff generated by the root subgrouls wherer is positive but not
fundamental U, is a normal subgroup @§ andU /U, is an elementary abeligorgroup of order
g", [1, Theorem 5.3.3]. In all but a few casé$; is the commutator subgroup’ of U. U’ is a
proper subgroup dfl, whenq = 2 andG is of type Gy, F4, B, or C, for n > 2, and also when
G = Gy(FF3), [4, Lemma 7]. In the exceptional casés/U’ has order greater thagl but it is
still elementary abelian, sindg is generated by elements of order In the non-exceptional
cases, any complex linear characteof U containsX; in its kernel whenever is positive but not
fundamental.

Let A be a complex linear characterldf We define the elemem}, of RGhy

e = UGZJ A(u)eu

We clearly have

ex=A(x)"le,

for all xin U. We now consider the inner productgf with the basis elements of
3.1Lemma Letxbe anelement df andA a complex linear character bf. Then
flexen) =209 3 ow(WA(v)
ue
Proof: We know that
flexe;) = feex ) =A(X)f(eey).

The rest follows from Lemma 2.1. O



We see from Lemma 3.1 thdtex e, ) is the product of g-th root of unity with the fixed
guantity
ow (W) (),
2
which we intend to evaluate in terms of known invariant§&of

Given a subse® of G, we lets(S) denote the sum iRG of the elements of.

3.2Lemma We have
av(Wu= % o)
UEZJ WEZ\/ v
Proof: Givenu € U andw € W, we set
1, ifueuy;

Cw(U) =
0, otherwise

It follows from this definition that

ueZJ owlu= ueZJ W€ Gl @

Reversing the order of summation in the second sum in (1), we obtain

3 ow(uu= 3 5 culuu @

and it follows from the formula foc,(u) that (2) may be written as

ugU C\N(U)UZWZWG(UVT)- ®3)

3.3 Corollary Let A be a complex linear characterldfand letw be an element dV. Let Ay,

denote the restriction df toU;; and let 1, denote the principal characterdff. Then we have
}UC\N(U)MU) = }WIUJI(M,lw)-
ue we

Proof: ApplyingA to each side of (3), we obtain

u; ow (U)A (u) = W;VUEZUJ Au)

and the second sum is clearly

}WIUVH(AW, L)

we



3.4Lemma LetA be acomplex linear characterldf whose kernel contains the subgrdig
described at the beginning of this section. lLéte the subset of all those fundamental raotsth
the property thafl is non-trivial onX;. Let D; be the subset of all elememtof W that satisfy
X(J) < ®*. Letw be any element dV. ThenA,, = 1, if and only if wow € Dj, wherewy is the

longest element AivV.

Proof: As we noted previously,’ is generated by thos§, wherer > 0 andw(r) > 0. Since
by our assumption of, X is in the kernel ofA wheneversis a positive root not id, it follows
that A,y = 1y, if and only if U,; contains no root subgroug with r € J or equivalently, if and
only if all roots inw(J) are negative. Now as the longest elemsgimaps all negative roots into
positive roots, it follows that,, = 1, precisely whempw(J) < @+, in which casevpw € Dy, as

required. O

3.5Lemma Letw; andw, be elements oV with w, = wowq, wherewy is the longest element
of W. Then
f(wy) +£(Wp) =N = |dT.

Proof: Clearly, for any root > 0, we havew,(r) = wp(w1(r)). Sincewp maps all positive roots
into negative roots, and vice versag(r) is positive if and only ifw;(r) is negative. The result
follows. O

Lemma 3.4 implies, using the previous notation, that

ow(U)A (u) = R
UGZJ W()\NZGDJ
and Lemma 3.5 yields that the sum on the right is

(@),

dyeDy

We now relate the sums above to the lattice of parabolic subgroups of
3.6 Theorem  Assume the notation of Lemma 3.4. Then we have
ZJO\N(U))L(U) =|G: Py,
ue
whereP; is the parabolic subgroup & associated to the subskof .
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Proof: LetW; be the subgroup & generated by the fundamental reflectisnswherer € J. By

the proof of [1, Theorem 9.4.5], we have

W) _ (W) ¢(dy)
qgv=3%q g 4)
WGZ\/ cW; d‘]gDJ

Now
L(w) _ .
g =|G:B| (5)
2o
Similarly,
2 q™) =Py :B], (6)
eW)

since the sum on the left of (6) arises from the decompositid? aito B, B-double cosets using
the elements dl; to label the double coset representatives. Thus
> ow(WAw= 3 g =GPy, (7)
ue dJEDJ

as required. O

4 Elementary divisors and modular reduction of the Steinberg lattice

Let| # p be a prime divisor ofG|. We assume now th& is a local ring of characteristic O in
which the unique maximal ideal IR. We continue to assume thRtontains a primitivegp-th root
of unity. We may takdR to be the ring of integers in a suitably large unramified extension of finite
degree of the field df-adic numbers. In this casB/IR is a finite field K, say, of characteristic

Let I denote theKG-modulel /II. We refer tol as thel-modular reduction of the Steinberg
lattice. Givena in Randv in |, we leta andv denote the images of these elementR/tR and
I /11, respectively. Similarly, lef denote the correspondir@rinvariant symmetric bilinear form

defined orl x I by the formula

Fx,y) = f(xy).

As we noted in Section 2 that some of the entries of the Gram miatok f equal 1, it follows

that f is not the zero bilinear form.



SinceRis a principal ideal ring with unique maximal idd&, the theory of the Smith normal

form shows that there exifbases

{Xt,..,%m} and {y1,...,Ym}

of | with

f(x,y;) =1%8;, 1<i,j<m,
wherem = |U| and theg; are non-negative rational integers satisfying
O=ag<a<...<any

(we may takea; = 0, sincel does not divide all the entries @f). Thus, working overr, the

elementary divisors dD are

|3 22 jam,

The product of these powers bois thel-part of detD.

Let v be thel-adic valuation orR, defined so that(I') = i. For each integek > 0, we define
[(k)={xel:v(f(xy)) >kforallyel}.

Itis clear that (k) is aG-invariant sublattice of of maximal rank. We now set

[(K) = (1(k) +11)/1l

and note that(k) is KG-submodule of.

4.1 Lemma  With the notation above, ditk) equals the number of indicésvith & > k.

Proof: It is straightforward to check thitk) has arR-basis consisting of thosg with g > k,
together with thosé<2iy;, wherea; < k. Sincel*-3y; € Il if a; < k, thosey; with a; > k form a

basis ofl (k). O

4.2 Corollary  TheKG-modulel (k)/I (k+ 1) has dimension equal to the number of indices
with g = k.



We thus obtain a filtration df by the module$ (k) /I (k+ 1) in accordance with the different

powers ofl that occur among the elementary divisorsDof This filtration seems to have been
introduced by Jantzen in [8, Lemma 3].
It is a routine matter to show that there isSainvariant symmetric bilinear form defined on

I (k) x I (k) whose radical i$(k+ 1). This implies the following result, whose proof we omit.

4.3 Theorem  Providedl (k)/I(k+1) is non-zero, it is a self-dud{ G-module.

Now let A be a linear character &f of the non-exceptional type described in Lemma 3.4. Let
J be the subset of fundamental roots associatet! &md letP; be the corresponding parabolic
subgroup ofG. Letc= v(|G: P|). Lemma 3.1 and Theorem 3.6 show tleatc I(c) bute, ¢

[(c+1). Thusg; determines a non-zero one-dimensiok&l-submodule in (c)/l(c+1). We

therefore have the following result.

4.4 Theorem Letl| # p be a prime divisor ofG|. Suppose that there are exadtlgifferent
powers ofl, sayl®, ..., %, that divide|G : P|, whereP ranges over the lattice of parabolic
subgroups containin. Thenl?, ... % occur as elementary divisors Bf over R and thel-

modular reduction of the Steinberg lattice has at leasimposition factors foKG.

We can now give a characterization of the so8lef | in terms of the elementary divisors
of D. Our proof involves showing thei is an irreducibleKG-module, a result first proved by
Tinberg, [12, Theorem 4.10], in the more general context of a group possessing an unsaturated

split (B,N)-pair of characteristip. In what follows, we denote the principal charactetJoby 1,

e = Z)eu
uec

and write

for the corresponding elementRG.

4.5 Theorem Letl # pbe a prime divisor ofG| and letk = v(|G: B|). Let Sdenote the socle
of I. ThenSis an irreducibleK G-module and it containg;. Furthermore, the highest powerlof

that occurs as an elementary divisor oResf D is ¥, andl (k) = S Thus the multiplicity ofl © as

an elementary divisor dd is dimS.



Proof: We will identifyl as the submodule &G generated bg, wheregis the image o&in
KG. We may then also view the elementd @sK-linear combinations of expressions of the form
o(B)x, wherex € G and

c(B)=Y b
beB

Let M be any non-zero irreducible submoduleladind lets # 0 be an element df1. Then an
element of the forno (B)x is present ins with non-zero coefficieny. Thusc(B) is present in

sx 1 € M with coefficienty. We may write

—1 ~
sx =Y wneu

where they, are inK. By [11, Theorem 1],

Now setting

we find that
(sxHy oUW =y S n) S eu= S eu=geM.
It follows thatM is unique and hence equ&sThus,Sis irreducible and contaire, as required.
We next note thae; € | (k) bute; ¢ | (x+1). It follows thatl* is an elementary divisor of

D. Let nowl! be the highest power dfthat occurs as an elementary divisoifand suppose by
way of contradiction that > x. Lemma 4.1 implies thdt(t) is a non-zero submodule bf Hence

[(t) containsSand thuse; € | (t). This is a contradiction. Therefore= «, as claimed.

Sincel (x) # 0, it follows thatS< | (k). Suppose, if possible, th&t~ | (k). Now Theorem 4.3

implies thatl (k) is a self-duaK G-module. Letg denote aG-invariant non-degenerate symmetric
bilinear defined orl (k) x 1(x) (g is derived fromf in a straightforward way). Le§ be the

subspace of(k) defined by

S ={xel(x):9(x,S) =0}.
As Sis aKG-submodule ang is G-invariant, it is clear tha§, is also aKG-submodule, and it is

not trivial. Thus we hav& < S;. Elementary duality theory implies that

IGICEES
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whereS* is the dual module o8. We know thatey is a non-zero fixed point df in Sand there

is thus a trivial composition factor fdd in S*. Sincel does not dividgU |, U acts completely
reducibly onl (k) and it follows thatJ has a two-dimensional subspace of fixed points. This is a
contradiction, since the subspace of fixed pointsl af its action onl is one-dimensional (recall
thatT is isomorphic as &U-module to the regular moduléU). We deduce thalt(x) = S, as
required. d

Theorem 4.5 implies an earlier result of Steinberg, [11, Theorems 2 and 3].

4.6 Corollary Let| # p be a prime divisor ofG|. Thenl is an irreducibleK G-module if and
only if | does not divideG : B.

Hiss showed in [3] that the trivigKG-module is a composition factor dfif and only if |
dividesq+ 1. Subsequently, Khammash improved this result to show that the sotles ofie
trivial KG-module if and only ifi dividesq+ 1, [9]. We will now reprove Khammash’s theorem

using the methods developed in this paper.

4.7 Theorem  The trivial KG-module is a composition factor bfif and only if | dividesq+ 1.
Furthermore, if the trivial module is a composition factor pft occurs exactly once and equals

the socleSofI.

Proof: Suppose thatdividesq+ 1. We will show that

&= (—1)Nggcg,

whereN = |®T|. Letw be any element dV. Givenu; € U, andu, € U,,, setu = uiu,. Then
u € U and the coseBn,u equalsBn,u,. Fixing up, there are thug),’ | elementai € U such that
Bnyu = Bnyup. Consequently, given any element B, the coefficient ofonyu, in & is equal
to e(w)|U,;| modl. Since|Uy | = V'™, ande(w) = (—1)'), it follows from the supposition
thatq = —1 modl that the coefficient obn,u; in & is (—1)N. However, each element & is

uniquely expressible in the fortm,u, by [1, Theorem 8.4.3], and thus it follows that
€ = (_1)N g,
2
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as stated. We deduce thatis a non-trivial fixed-point foG in I and sinceSis irreducible, it must
be the trivialkK G-module.

Conversely, suppose that the triviiG-module occurs as a composition factorlofLet M
and M; be KG-submodules of with M; < M andM/M; the trivial KG-module. SinceM is
a completely reducibl&U-module, there exists KU-submoduleM, of M such thatM, is the
trivial one-dimensionakKU-submodule an®l = M; & M,. Now asl is the regulaikU-module,
& spans the unique one-dimensional triikl -submodule ofl. It follows thate; € M,. This
implies thatM; = 0. For, if M1 = 0, M1 containsS, sinceSis irreducible. This is impossible, as
we know thagr € S< M;, wherea®;, ¢ M1. Thus,M;1 =0, as stated, and is the one-dimensional
subspace spanned by. ConsequenthySis the trivial K G-module. Sinceé is a submodule 0KG,

andKG contains a unique one-dimensional trivikiG-submodule, spanned by the element

g;g,
e = agég

for some non-zero elementof K. Therefore, from the first part of this proof, it must be the case

we must have

that
e(w)|Uy| Eg(\/\/)\um modl|

for all wandw’ in W. Settingw equal to any reflection and equal to the identity, we obtain
—qVt =" modl,

which implies that dividesq+ 1, as required. O

5 Two examples of modular reduction of the Steinberg lattice

While Theorem 4.4 tells us about powerd difiat occur as elementary divisors of the Gram matrix
D, it would also be useful to have some upper bound on their multiplicities. A formula f@ det
would provide partial information in this respect. N@vis a specialization of the group matrix

of U introduced by Frobenius in his creation of the theory of group characters. We will briefly
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reformulate parts of Frobenius’s theory to show how we may find some integer divisors»f det
and then calculate dét in one non-trivial case.
LetT = {ti,...,t,} be afinite group of ordem. Letc(t;), ...,c(t,) be anyn rational integers

labelled by the elements a@f. Consider the element
t =c(ty)ty+---+c(th)tn
in the complex group algebf@T . We define a linear transformatian CT — CT by
7(X) =tx

for all x e CT. With respect to the group element basigidf, T has matrixd, say, whoséi, j)-
entry isc(tjt1).
The group algebr&T is a direct sum of minimal left ideals, say

CT=ho---als

and under the left regular representation(df on itself, each left idedl; is an irreducibleCT -
module and is thus-invariant. LetX; be the irreducible representationfforded byl;. Then,

in its action onlj, T acts as the linear transformation
Xj(t) = c(ty)Xj(t2) + -~ + c(tn) Xj (tn).

It follows that we can evaluate dAtas a product of the determinants of the linear transformations

just considered, since we clearly have
S
detA = []detX;(t).
n
We quote without proof the following result describing properties of the factors in this product.

51Lemma LetT = {t,...,t,} be a finite group of orden. Let by, ..., by be n rational
integers. Lety be an irreducible complex characterofand letX be a representation df with
charactery. Then

det(bgX(t) 4 - - - + bpX(tn))

depends only ory and not on the choice of representatinlt is an algebraic integer in the field

Q(x) obtained by adjoining t@ all the values taken by.
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In the case of interest to us, we take=U, andb; = ow(u;) for 1 <i <m= |U|. Then we see
that
detD = [7] det(ow (U)X (Uz) + -~ + Ow (Um)X; (Um) )5,
]

whereX; runs through the inequivalent irreducible complex representatidds afid each factor
is an algebraic integer. Taking into account the case Wjdras degree 1, we obtain the following

result that describes certain factors of Det

5.2 Corollary Let A be a complex linear character df whose kernel contains the subgroup
U, described at the beginning of Section 3. et J(A) be the subset of all those fundamental
rootsr with the property tha#l is non-trivial onX; and letP; be the parabolic subgroup &

associated td. Then deD is divisible by

[1/G: Pyl
A

the product being taken over all admissille

It is more complicated to find the contributions to @ethat arise from the irreducible repre-
sentations otJ of degree greater than 1. To illustrate the theory just described, we will evaluate
detD whenG = B>(Fq), whereq is a power of an odd prim@. The following table lists the
various irreducible representations of the SylpwubgroupJ of G and the factors of ddd that
correspond to them. We omit details of the calculations, which involve finding explicit matrices

for the irreducible representationsldf

degree of representatignnumber of representations factor of detD
1 1 (a+1)%(g”+1)
1 2(q-1) (Q+1)(e*+1)
1 (q—1)? 1
g (a-1) (Q+1)(e*+1)
q e q+1
g . (+1)(c+1)
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5.3 Corollary  LetG = By(Fq), whereq is a power of an odd prime. Then we have

detD = (q+1)3(q?+ 1),

(@+1)?*

wherea=¢®+q, b= g 5 1.

Using the formula above, we proceed to consider two examples where we try to find a compo-

sition series fof whenG = B(Fy).

5.4 Example G =By(Fq), godd,|l an odd prime divisor ofj+ 1.

Letq be a power of an odd primg let| be an odd prime divisor af+ 1 and letd = v(q+1).
Let G = By(IFq) and letr; andr, be fundamental roots for a root system of type Let ys
denote the Steinberg charactei@fBy the results of [10], there are irreducilblenodular Brauer

characterspg, ¢, ¢s, ¢; and@s; and a positive integex such that

Xst= Qo+ 0P+ Qs+ P + Pst

onl-regular elements db. We havex = 1 if | = 3 andd = 1, otherwisex = 2. We may describe

these Brauer characters by noting tipais the principal Brauer character and

—_1)2 2
o) = Y = o =1

Now there exist real-valued irreducible complex characgeindy; of G such that

Xs= Qo+ @s, Xt = Qo+ ¢

onl-regular elements. Sincg andy; are real-valued, it follows thaps and ¢; are real-valued.
Furthermore, there is a real-valued irreducible charagtef G such thaty = ¢ on I-regular
elements. Thug is real-valued. Now it is known that the restrictiondoof y contains no linear
character olJ. It follows that the same is true af. Finally, it is clear thatps; must also be
real-valued.

Let ¢p correspond to the trivial irreducibl€G-moduleVy, ¢ to V1, ¢sto Vs, ¢ to V3 andgg; to
V4. Then they, are all self-dual, as their Brauer characters are real-valued. It is straightforward to

check that the restriction td of each ofys andy; contains a linear charactérfor whichJ = {r1}
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or {r}, and the same must then be trueggfand ¢r. Since|G: Py| = (q+1)(¢?+ 1) whenJ is

as above, we have(|G: Py|) =d in this case. It follows tha¥, andVs are composition factors of

[(d)/1(d+ 1), each occurring with multiplicity 1. Furthermore, sine¢G : B|) = 2d, we know

from Theorem 4.5 thdfd occurs with multiplicity 1 as an elementary divisorDf
We set

u=dimi(d)/I(d+1).

Thenl9 occurs with multiplicityu as an elementary divisor &f. Moreover, sincé/, andVs are

composition factors of(d) /I (d + 1), we have
u> dimVa 4+ dimVz = (g +1) — 2.

If we now consider the power df that divides deD and the contributions of the elementary

divisors|® andl?® to this power, we obtain the estimate
ud+2d < v(detD) = d(q® +q).
Since we also have the inequality
ud+2d > d(q®+q),

it follows thatu = g® + q— 2. Thus,V, andVs are the only composition factors bfd)/I (d + 1),

and the elementary divisors &f arel9 with multiplicity ¢+ q— 2 andl?® with multiplicity 1.

Theorem 4.3 shows thafd)/I(d+ 1) is a self-dualKG-module and, sinc¥, andVs are non-

isomorphic self-duaKG-modules, it follows in a straightforward way theid) /I (d+ 1) is the
direct sum oM, andVs. The composition factors (W@ areVy, with multiplicity o, andV, with

multiplicity 1. In the case thatt = 1,1/1(1) is the direct sum o¥; andV,, as both modules are

self-dual. Ther has a composition series

V1 ®Vy
Vo & V3
Vo
with the trivial moduleVp equal to the socle. Whem = 2, we have not been able to deduce a

composition series fdr/I(1).
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5.5Example G=By(Fg),g=1mod4,| =2

In this example, we take= 2, G = B»(Fq), and we assume that= 1 mod 4. Following
the notation of our previous example and also that of [13], the results of [13] show that there are

2-modular Brauer charactegs, 1 < i < 6, and an integex > 0 such that

Xst= @0+ Q1+ @2+ Q3+ P4+ @5+ (2X+ 1) g
on 2-regular elements @. We have

_1\2
01(1) = 92(1) = S (P + (1 —x) +1)
2 _1)\2
0a(1) = ps(1) = 2, @g(1) = HOLS
211
0s(1) = Q(q2+ ) 1

and ¢y is the principal Brauer character. Eaphis real-valued and corresponds to an irreducible
self-dualK G-module,V; say, for 0<i < 6.

The restriction tdJ of ¢g contains no linear character of For 1<i <5, ¢;i(1) is relatively
prime top and thus the restriction td of each sucly; contains a non-trivial linear character. Itis
straightforward to see that the restrictior taf each ofgs, ¢, and@s contains a linear character
A for whichJ = {r1} or {r2}. Since for such a subsétof fundamental rootsy(|G: P;|) = 2, it
follows thatVs, V4 andVs are all composition factors ¢£2) /1(3). 1(3) is the socle of and equals
the trivial KG-module. The only linear characters that occur in the restrictidh & ¢, and @2
are those for which the corresponding subké&t I1. It follows thatVy, andV, are composition

factors off /1(1).
We set

u=dimi(1)/1(2), v=dimi(2)/1(3).

Then 2 has multiplicityu as an elementary divisor &f, 22 has multiplicityv, and we know from

Corollary 4.6 that 2 has multiplicity 1. The product of these elementary divisors is the power of

2 dividing detD and we deduce that

q(g+1)?

-1
2

U+ 2v+3=v(detD) = ®+q+
As we know that/z, V,; andVs are composition factors ¢2) /1(3), it follows that

v > dimV3 + dimV, + dimVs.
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Furthermore, a¥; andV, occur as composition factors bonly in T/@, it follows thatVg is a

composition factor of (1) /1(2) if u> 0 and ofl (2)/1(3) if v> dimV3z+ dimV, + dimVs.

Straightforward inequality estimates using the formula forRigfield thatu = dimVg and

v =dimV3 +dimV; + dimVs. Thus, sincé/s, V4 andVs are non-isomorphic and self-dual,

I(D)/1(2) =V6, 1(2)/1(3) =Vz®Va®Vs.

The composition factors df/1(1) areV; andV, with multiplicity 1, andVes with multiplicity 2x.
In casex = 0, which occurs, for example, whep= 5, by the tables in [7, p.145], we obtain the

composition series

VieVs
Ve
V3 Va® Vs
Vo
We note that this example illustrates that we cannot detect all the elementary dividdrs of
through the linear charactersdf For we have seen that 2 occurs as an elementary divisor in this

case, but acts onl (1)/1(2) without one-dimensional invariant subspaces.

6 The modular reduction of the Steinberg lattice whenG = An(Fq)

The theory of Section 4 gives sufficient conditions for the factdkg/I (k+ 1) to be non-trivial

in terms of the powers df that divide the numbers : Pj|. We would have a complete corre-
spondence if we knew that the restrictionloof any irreducible -modular Brauer character of

G contains a linear character dfwith non-zero multiplicity, but the examples in Section 5 show
that this does not happen in general. As might be anticipated, the situation is under better control

whenG = Ay(Fy), since the following theorem is true.

6.1 Theorem Let G = An(Fq) and letM be an irreducibléG-module. TherM contains a

one-dimensionakU -submodule.

This theorem is probably well known and a proof of it may be modelled on a corresponding

result proved by Gelfand and Graeyv, [2], in the context of complex representations. We omit the
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details, as the theorem is not crucial to our further development of the theory.

6.2 Corollary  LetG = A,(IFq) and letl be a prime divisor ofG : B|. Then the powers dfthat
occur as elementary divisors ovRof the Gram matriD are precisely the powers bthat divide

the indicesG : P|, whereP runs over the set of parabolic subgroups that corain

Now the general Chevalley gro@pdescribed in this paper is realized as a group of automor-
phisms of a Lie algebr&” overFy, defined in terms of the root systetn G is a normal subgroup
of alarger groupﬁ of automorphisms afZ, described in [1, p.98 and p.118]. Itis straightforward
to show from the definition oé thatG acts on the Steinberg lattice. Whén= An(Fg), the larger
groupé is isomorphic to the projective general linear group RGI(Fq) and thus we may con-
sider the Steinberg lattice to be a module for this group. In particular, we may use the tables in

[5] to determine the compaosition factors of the modular reduction of the Steinberg lat@fof

n < 9. Perusal of these tables suggests that any non-zero quidigfit(k + 1) is an irreducible

KG-module. This leads us to formulate a conjecture, as follows.

6.3 Conjecture  Let G = A,(IFq) and letl be a prime divisor ofG : B|. Letk > 0 be an integer

and letl (k) be the corresponding sublatticelofThen the quotienit(k) /I (k+ 1) is either zero or

is an irreducibleK G-module. Equivalently, the number of composition factors ofki@module
I equals the number of different powerslahat equal thé-part of |G : P|, asP ranges over the

parabolic subgroups @3.

The fact that the conjecture above is true for certain small valuesatibws us to use the
dimensions of the composition factorslofo obtain an explicit formula for dé in these cases.
For we know the elementary divisors Bf in terms of the prime divisors ofG : P|, and their
multiplicities are provided by the dimensions of the composition factors. We illustrate how this
technique may be put into practice by evaluating@ethenn = 3, using the tables in [5] for
GL4(Fy).

6.4 Theorem LetG= A3(Fg). Then we have
detD = (q+1)*(o* + 1)°(¢*+ 9+ 1)°,
wherea=®+®—?+1,b=0’+0*—g?—q+1andc=qg*+q*— 1.
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Proof: Letys be the Steinberg character®fand letl be a prime divisor ofG : B|. We begin
with the case thdtdividesq+ 1 and setd = v(q+ 1). Suppose thdtis odd. Then thé-modular
decomposition ofs; is given by

Xst = Po+ P1+ P2,

where theg; are irreducible Brauer characters apglis the principal Brauer character. We also

have
e(1) = (@ -D(P+1), 1) =d*(a’—-1)(g—1).

Now ¢ is associated with the elementary divi$&t, ande; with the elementary divisdf. Thus
v(detD) = 2d +d(q®* — 1)(q? +1).
Suppose next that= 2. The 2-modular decomposition gf; is described by
Xst= Qo+ Q1+ P2+ @3,
whereqy is the principal Brauer character and
o(1) = (® - 1)(P+1), ¢(1)=(a>~1)(q-1).

The Brauer charactexs, ¢, and g, are associated to the elementary divisds 2, 29+1 and 2,

respectively. Thus
v(detD) =2d+ 1+ (d+1)(®— 1)(oP+1) + (*~ 1)(g— 1)

whenl = 2.

Next, we letl be an odd prime divisor af® + 1. Then we have
Xst = Q1+ @2,
whereg; (1) = ° +q* — ¢ —q+1 and
v(detD) = v(q? + 1) p1(1).
Finally, we letl be a divisor ofg? + g+ 1. Then we find that

Xst = Q1+ @2,
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whereg; (1) = g* 4+ g% — 1, and correspondingly
v(detD) = v(q?+q+1)p1(1).

This accounts for all prime divisors ¢& : B| and it is straightforward to see that the prime factors
of detD which we have found are equivalent to the formula claimed foDdalbove. O

Using the same ideas, we have obtained the formula
detD = (q+ D)X’ + 1)°(+a+1°(q" + P+ +q+1)%,

for G = Ay(Fg), wherea=q’ +® - +1, b= +qd - - ?+1,c=q*+g°—qgand
e=0’+0®—20°+?+q—1. The two formulae we have obtained are difficult to interpret
combinatorially in the form presented, but we feel that it may be possible to calculdieidet
principle wheneveG = A,(IFq). We have in mind something in the spirit of the James-Murphy
formula for the determinant of the Gram matrix of the integral symmetric bilinear form associated
to a Specht lattice, [6]. On the basis of these results and Corollary 5.3, it seems tBaisdet

a product of factors of the forrP,(q), where®,(q) denotes then-th cyclotomic polynomial

evaluated at}, andmruns over the degrees of the Weyl group3f
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