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Abstract. Let G be a connected linear algebraic group over an algebraically

closed field of prime characteristic. Let F : G → G denote a standard Frobe-
nius mapping of G. Let τ be an involutory automorphism of G which commutes

with F and let F ∗ denote the corresponding twisted Frobenius mapping. Let

H denote either GF or GF∗
and let H〈t〉 denote the extension of H by a

cyclic group of order 2, generated by t, that induces the automorphism τ on

H. We show that there is a one–to–one correspondence between the conjugacy

classes of GF 〈t〉 \ GF and those of GF∗ 〈t〉 \ GF∗
. If xt and yt are elements

in corresponding conjugacy classes of the two groups, then xt and yt have the
same order and the centralizer of xt in GF is isomorphic to the centralizer of

yt in GF∗
. We also discuss numerical evidence for the existence of a related

correspondence of characters of the two extension groups.

1. Introduction

Let G be a connected linear algebraic group over an algebraically closed field K
of prime characteristic p. Let F : G → G denote a (standard) Frobenius mapping
of G and let GF denote the finite subgroup of fixed points of F in G. Suppose that
G has an involutory automorphism τ which commutes with F in its action on G.
We will let gτ denote the image of g ∈ G under τ . We may then form a twisted
Frobenius mapping F ∗ : G → G by setting

F ∗(g) = F (gτ )

for all g in G. Since (F ∗)2 = F 2, it follows that the subgroup GF∗
is contained in

GF 2
.

Let x be any element of GF . The Lang–Steinberg theorem, [2], Theorem 10.1,
shows that there exists an element z in G with x = z−1F ∗(z). Since F (x) = x, and
F commutes with F ∗, it follows that

F (z)−1F ∗(F (z)) = z−1F ∗(z)

and thus
zF (z)−1 = F ∗(z)F ∗(F (z)−1) = F ∗(zF (z)−1).

This shows that the element y = zF (z)−1 is in GF∗
. A different choice of z used

to represent x according to the Lang–Steinberg theorem leads to another element
in GF∗

which is not obviously related to the element y just obtained. The purpose
of this paper is to show that the idea of associating x in GF with y in GF∗

can be
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used to define a correspondence of certain conjugacy classes in extension groups of
GF and GF∗

, respectively, as we will now explain.
Let G〈t〉 denote the semi–direct product of G by a cyclic group of order 2,

generated by an involution t satisfying txt = xτ for all x ∈ G. Since F commutes
with τ , it follows that both GF and GF∗

admit τ as an automorphism and are thus
normalized by t in G〈t〉. Let GF 〈t〉 and GF∗〈t〉 denote the corresponding subgroups
of G〈t〉 generated by t and GF , GF∗

respectively.
Such groups are relevant to the study of finite groups of Lie type. To describe

a natural example, we first note that the simple algebraic groups that admit an
involutory automorphism of the type described are Am(K), Dm(K) and E6(K) (the
involution being induced by a symmetry of the Dynkin diagram). We now take G
to be a 2–fold cover of the simple adjoint group Dm(K) when p is odd and Dm(K)
itself when p = 2. We may then identify G with the special orthogonal group
SO2m(K) and take τ to be the involutory automorphism induced by an involutory
diagram symmetry (this is the same as the automorphism induced by conjugation
by an orthogonal reflection). The group G〈t〉 is the full orthogonal group O2m(K)
in this case. Moreover, if q is a power of p and F is induced by the Frobenius
mapping k → kq of K, GF is the split special orthogonal group SO+

2m(Fq) and GF∗

is the non–split special orthogonal group SO−
2m(Fq), while GF 〈t〉 and GF∗〈t〉 are

the split and non–split full orthogonal groups O+
2m(Fq) and O−

2m(Fq), respectively.
Another case that arises in linear algebra occurs when we take G to be GLm+1(K),
a group belonging to the Am(K)) family. The study of the conjugacy classes in
G〈t〉 \G is equivalent to the classification of non–degenerate bilinear forms.

2. The correspondence of conjugacy classes

Let H denote any of the groups G, GF or GF∗
. In order to define our correspon-

dence of conjugacy classes, we prove some elementary results relating to conjugacy
of elements in H〈t〉. As a preliminary observation, we note that elements at and bt
in H〈t〉 are conjugate if and only there exists an element c in H with c−1acτ = b.

Lemma 1. Let x be an element of GF and write x = z−1F ∗(z) for some z ∈ G.
Suppose that xt is conjugate in GF 〈t〉 to wt, where w = v−1F ∗(v) for some v ∈ G.
Then

zF (z)−1t and vF (v)−1t

are conjugate in GF∗〈t〉. Thus, if we also have x = z−1
1 F ∗(z1) for some other

element z1 in G, the elements

zF (z)−1t and z1F (z1)−1t

are conjugate in GF∗〈t〉.

Proof. As we noted above, there exists g ∈ GF with g−1xgτ = w. Moreover, as τ
is involutory and g ∈ GF , we have F ∗(g) = gτ . It follows that

g−1z−1F ∗(z)gτ = (zg)−1F ∗(zg) = w = v−1F ∗(v).

We deduce that zgv−1 ∈ GF∗
. We set zgv−1 = u, and then obtain v = u−1zg,

where u ∈ GF∗
. Since g = F (g) and uτ = F (u), it follows that

vF (v)−1 = u−1zgF (g)−1F (z)−1F (u) = u−1zF (z)−1uτ ,

and this equality proves that vF (v)−1t and zF (z)−1t are conjugate in GF∗〈t〉, as
required. The second part is clear by taking w = x and z1 = v. �
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Given an element x of H, we let [xt] denote the conjugacy class of xt in H〈t〉.
We trust that context will make it clear which subgroup H is implied in the event
of possible ambiguity. We now define a function φ mapping a conjugacy class [xt]
in GF 〈t〉 to a conjugacy class [yt] in GF∗〈t〉 in the following way. Write x in the
form z−1F ∗(z) and let y = zF (z)−1 ∈ GF∗

. Then we set

φ[xt] = [yt].

Lemma 1 shows that the definition of φ does not depend on the choice of z to
represent x or the choice of x to represent the conjugacy class [xt]. We note that φ
is only defined at the level of conjugacy classes and is not well defined on elements.

Lemma 2. The function φ defines a one–to–one correspondence between the con-
jugacy classes of the form [xt] in GF 〈t〉 and the conjugacy classes of the form [yt]
in GF∗〈t〉.

Proof. We first show that φ is injective. Suppose then that φ[xt] = φ[x1t]. Write

x = z−1F ∗(z), x1 = z−1
1 F ∗(z1)

where z and z1 are appropriate elements of G. Then there exists some u ∈ GF∗

with
u−1zF (z)−1uτ = z1F (z1)−1.

Since uτ = F (u), this implies that z−1uz1 ∈ GF . We set g = z−1uz1. Then, since
gτ = F ∗(g), we have

g−1z−1F ∗(z)gτ = (zg)−1F ∗(zg) = (uz1)−1F ∗(uz1) = z−1
1 F ∗(z1)

and this implies that g conjugates xt into x1t. Thus [xt] = [x1t] and it follows that
φ is injective.

Next, we show that φ is surjective. Let u be any element of GF∗
. The Lang–

Steinberg theorem implies that u = zF (z)−1 for some z ∈ G. Since F ∗(u) = u,
we readily check that z−1F ∗(z) is in GF . Thus if we put x = z−1F ∗(z), we have
φ[xt] = [ut], which implies that φ is surjective, as required. �

We now show that if the order of an element in [xt] is r, the order of an element
in φ[xt] is also r. Thus φ preserves the order of the elements in a conjugacy class.

Lemma 3. Given x ∈ GF , let [yt] = φ[xt]. Then xt and yt have the same (finite)
multiplicative order in G〈t〉.

Proof. As xt and yt have finite even order, it suffices to show that (xt)2 and (yt)2

have the same order. As usual, we write x = z−1F ∗(z) and set y = zF (z)−1. Then
we have

(xt)2 = xxτ = z−1F ∗(z)(zτ )−1F (z)

(yt)2 = yyτ = zF (z)−1zτF ∗(z)−1.

It follows that
z−1(yt)2z = (xt)−2,

and this implies that (xt)−2 and (yt)2 have the same order, since they are conjugate
in G. Thus (xt)2 and (yt)2 also have the same order, as required. �

The mapping φ has an additional useful property, since the centralizer of xt in
GF is conjugate in G to the centralizer of yt in GF∗

, where yt ∈ φ[xt], as we now
show.
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Lemma 4. Let x be an element of GF , with x = z−1F ∗(z) for some z ∈ G. Let
y = zF (z)−1. Then the centralizer of xt in GF is z−1GF∗

z∩GF and the centralizer
of yt in GF∗

is zGF z−1 ∩ GF∗
. Thus, since these are conjugate subgroups, the

centralizer of xt in GF is isomorphic to the centralizer of yt in GF∗
.

Proof. An element u ∈ GF commutes with xt if and only if u−1xtu = xt. This
occurs if and only if u−1xuτ = x. Since uτ = F ∗ (u), u commutes with xt if and
only if zuz−1 is in GF∗

. Thus the centralizer of xt in GF is z−1GF∗
z ∩GF , and a

similar argument shows that the centralizer of yt in GF∗
is zGF z−1 ∩GF∗

. Since

z(z−1GF∗
z ∩GF )z−1 = zGF z−1 ∩GF∗

,

the two centralizers are conjugate in GF and hence isomorphic. �

We sum up our findings related to φ in the following theorem, which amalgamates
the various lemmas we have proved.

Theorem 1. Let G be a connected linear algebraic group over an algebraically
closed field of prime characteristic. Let F : G → G denote a standard Frobenius
mapping of G. Suppose that G has an involutory automorphism τ which commutes
with F and let F ∗ denote the corresponding twisted Frobenius mapping. Let H
denote either GF or GF∗

and let H〈t〉 denote the extension of H by a cyclic of
order 2 that induces the automorphism τ on H. Given h ∈ H, let [ht] denote the
conjugacy class of ht in H〈t〉. Given x ∈ GF , write x = z−1F ∗(z) for some z ∈ G
and set y = zF (z)−1 ∈ GF∗

.
Then the function φ defined by φ[xt] = [yt] is a one–to–one correspondence

between the conjugacy classes of GF 〈t〉\GF and those of GF∗〈t〉\GF∗
. The elements

xt and yt have the same order and the centralizer of xt in GF is isomorphic to the
centralizer of yt in GF∗

.

We mention the following special case of our theorem, which does not appear to
be obvious from the standpoint of linear algebra.

Corollary 1. There is a one–to–one correspondence between the conjugacy classes
of O+

2m(Fq)\SO+
2m(Fq) and those of O−

2m(Fq)\SO−
2m(Fq) which preserves the order

of the elements in corresponding conjugacy classes. Under this correspondence, the
centralizer in SO+

2m(Fq) of an element in a conjugacy class in O+
2m(Fq) \SO+

2m(Fq)
is isomorphic to the centralizer in SO−

2m(Fq) of an element in the corresponding
conjugacy class of O−

2m(Fq) \ SO−
2m(Fq).

If [xt] is a real class in GF 〈t〉, it is not necessarily the case that φ[xt] is also a
real class. Examples of this phenomenon occur when G is the general linear group
GLn(K) of degree n ≥ 2 over K. Taking τ to be the transpose-inverse automorphism
and F to be the Frobenius mapping already defined, GF is the general linear group
GLn(Fq) and GF∗

is the general unitary group Un(Fq). It is known that all classes
of GF 〈t〉 are real, whereas, certainly for odd q, there are classes of the form [yt] in
GF∗〈t〉 that are not real. This point arises in the discussion of characters in the
final section.

3. Possible character correspondences

Let H now denote either of the groups GF or GF∗
and let χ be an irreducible

complex character of H. Since H is a normal subgroup of index 2 in H〈t〉, we
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may consider the action of t on χ. If χ is not fixed by t, χ induced to H〈t〉 is an
irreducible character that vanishes on all elements of H〈t〉 \ H. We will therefore
assume that χ is fixed by t. It then extends to an irreducible character χ′, say, of
H〈t〉. There is a second extension of χ obtained by multiplying χ′ by the linear
character of order 2 of H〈t〉 whose kernel is H. When H is a quasi–simple group
included in the ATLAS of Finite Groups, [1], and the character table of H〈t〉 is
presented, only one of the extensions of χ is displayed. Assuming that t is an
involution of H〈t〉 \H whose centralizer has largest order, the convention adopted
is that, provided χ′(t) 6= 0, there is a unique extension of χ that takes a positive
integer value on t, and it is this extension that is displayed. In the great majority
of cases listed in the ATLAS, χ′(t) 6= 0 for all fixed χ but there are exceptions to
this pattern.

The theory that we have outlined shows that the number of irreducible charac-
ters of H fixed by t is the same for either isomorphism type of H and this number
is the number of conjugacy classes in H〈t〉 \H. While the correspondence φ does
not preserve all aspects of conjugacy classes relating to character theory, it is inter-
esting to see if there is any discernible correspondence in the values of the extended
characters on the elements of H〈t〉 \H in the two cases. We remark that we cannot
deduce the exact form of the correspondence φ using only the data displayed in
the ATLAS, since there may exist several conjugacy classes of elements having the
same order and centralizers of the same size. Thus any correspondence of char-
acter values we discover by inspection is not necessarily one associated to φ, but
the existence of φ certainly provides the motivation for looking for any possible
correspondence.

We find a complete correspondence for the groups GL4(F2) and U4(F2), where
there are 10 extended characters, and the two parts of the character tables relat-
ing to the extended groups are identical up to permutations of the 10 rows and
10 columns. For other groups, there is no complete correspondence but nonethe-
less remarkable duplications may be observed. In the case of the groups SO+

8 (F2)
and SO−

8 (F2) there are 27 extended characters, and 23 of these display complete
numerical correspondence in the two extension groups. For the groups SO+

10(F2)
and SO−

10(F2) there are 71 extended characters, and 63 of these display complete
numerical correspondence in the two extension groups.

What appears to be most fascinating near–correspondence occurs for the groups
GLn(Fq) and Un(Fq). We remarked above on a complete correspondence of char-
acters when n = 4 and q = 2. When n = 5 and q = 2, there are 13 extended
characters, 10 of which display complete correspondence. In the case of U5(F2),
the three characters that do not admit a correspondence of values are precisely
those that have Frobenius–Schur indicator equal to −1. These characters extend
to characters that are not real–valued, whereas, for GL5(F2), all the extensions are
real–valued, and so there can clearly be no correspondence. Furthermore, these
three extensions that are not real–valued are precisely those that vanish on t. Even
in the case of non–correspondence, there are still similarities, as there are precisely
three extended characters of GL5(F2) that vanish on t, and their values on elements
of the form xt are largely 0, as is the case for the three exceptional characters of
U5(F2).

While the numerical evidence is limited, this pattern of behaviour suggests the
following conjectures. We first note that the irreducible characters fixed by t are
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precisely the real–valued characters for each type of group. Suppose that χ is
an irreducible character of Un(Fq) that has Frobenius–Schur indicator equal to
1. Then χ should have a real–valued extension and the values of the extended
character should correspond to the values of an extension of a real–valued character
of GLn(Fq). Suppose, on the other hand, that χ is an irreducible character of
Un(Fq) that has Frobenius–Schur indicator equal to −1. Then the extensions of χ
are not real–valued and hence there is no correspondence with extended characters
of GLn(Fq). We remark that we can prove this assertion when q is odd. More
speculatively, the extensions that vanish on t are precisely those that are not real–
valued, and there are equal numbers of extensions of characters of GLn(Fq) that
vanish on t. Finally, the number of irreducible characters of Un(Fq) that have
Frobenius–Schur indicator equal to 1 should equal the number of real classes of the
form [yt] in the extension group, where y runs over Un(Fq). Here again, we remark
that we have proved this last conjecture when n = 3 and n = 4.
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