ON CENTRAL DIFFERENCE SETS IN CERTAIN NON-ABELIAN 2-GROUPS

ROD GOW AND RACHEL QUINLAN

ABSTRACT. In this note, we define the class of finite groups of Suzuki type, which are non–abelian groups of exponent 4 and class 2 with special properties. A group G of Suzuki type with $|G|=2^{2s}$ always possesses a non–trivial difference set. We show that if s is odd, G possesses a central difference set, whereas if s is even, G has no non–trivial central difference set.

1. Introduction

Let G be a finite multiplicatively–written group of order v and let D be a k-subset of G, where 1 < k < v. Let λ be a positive integer. We say that D is a (v, k, λ) -difference set in G if for each non-identity element g in G, there are exactly λ ordered pairs (a, b) in $D \times D$ with

$$g = ab^{-1}.$$

We say that D is a central difference set in G if it is a union of conjugacy classes in G. The purpose of this note is to provide, for each odd integer s, an example of a $(2^{2s}, 2^{2s-1} - 2^{s-1}, 2^{2s-2} - 2^{s-1})$ central difference set in a non-abelian 2-group of exponent 4. We remark that, up to complementation, a non-trivial difference set in a 2-group always has parameters of this form, by a theorem of H.B. Mann, [4], Theorem 1. The group which we use is a Suzuki 2-group, although we show more generally that a group of so-called Suzuki type also possesses such a central difference set. While other examples of non-trivial central difference sets in non-abelian groups may be known, we note that the 1999 survey article of R. Liebler suggested that such difference sets might not exist, [3], Conjectures, p.351.

2. Groups of Suzuki type

Let G be a group of order 2^{2s} , where $s \geq 2$ is an integer. Let Z(G) denote the centre of G. We say that G is of Suzuki type if the following hold.

- Z(G) and G/Z(G) are both elementary abelian groups of order 2^s .
- if x is any element of G Z(G) and $C_G(x)$ is the centralizer of x in G, then $|C_G(x)| = 2^{s+1}$.

Our main example of a group of Suzuki type is provided by the well–known Suzuki 2–groups, which we construct in the following way. Let F be a finite field of order 2^s , where $s \geq 2$. Define a multiplication on the set $F \times F$ by putting

$$(a,b)(c,d) = (a+c,a^2c+b+d)$$

¹⁹⁹¹ Mathematics Subject Classification. 05B10.

 $[\]textit{Key words and phrases}. \ \text{central difference set, conjugacy class, non-abelian 2-group}.$

for all ordered pairs (a, b) and (c, d) in $F \times F$. It is straightforward to see that $F \times F$ is a finite group of order 2^{2s} , which we shall denote by G_s and call a Suzuki 2–group. The identity element is (0,0) and the inverse of (a,b) is (a,a^3+b) . The centre $Z(G_s)$ of G_s consists of all elements (0,v) and is elementary abelian of order 2^s . The quotient $G_s/Z(G_s)$ is also elementary abelian of order 2^s .

Let x be any element of $G_s - Z(G_s)$. We may write x = (a, b), where $a \neq 0$. It is easy to check that $C_{G_s}(x)$ consists of all elements (c, d), where d is an arbitary element of F and c = 0 or c = a. Thus $|C_{G_s}(x)| = 2^{s+1}$ and we see that G_s is a group of Suzuki type according to the definition above. There do however exist groups of Suzuki type that are not isomorphic to a Suzuki 2–group. For example, a covering group (or stem cover) of an elementary abelian group of order 8 is a group of Suzuki type of order 64. There are several non–isomorphic such covering groups, including the Suzuki 2–group G_3 .

Let G be a group of Suzuki type with $|G| = 2^{2s}$. We will consider Z(G) to be a vector space of dimension s over \mathbb{F}_2 . Given elements x and y in G, let [x,y] denote the commutator $x^{-1}y^{-1}xy$. Since G is nilpotent of class 2, $[x,y] \in Z(G)$ and the relation

$$[x, yz] = [x, y][x, z]$$

holds for all z in G. Thus, if we fix x to be an element of G - Z(G) and let y run over G, the commutators [x,y] form a subgroup of Z(G). Moreover, since [x,y] = 1 if and only if $y \in C_G(x)$, and $|C_G(x)| = 2^{s+1}$, we see that there are 2^{s-1} different elements of the form [x,y] and they therefore constitute a hyperplane, H_x say, of Z(G). The conjugacy class of x in G is the coset xH_x .

The key point for the existence of a central difference set in G is the parity of s. The next lemma holds only when s is odd.

Lemma 1. Let G be a group of Suzuki type with $|G| = 2^{2s}$, where s is odd. Then each hyperplane of Z(G) is equal to some H_x .

Proof. We give a character–theoretic proof. Suppose that there is a hyperplane H of Z(G) not equal to any H_z , where z runs over the elements of G. Let λ be a complex linear character of Z(G) whose kernel is H. Let x be any element of G - Z(G). Since $H_x \neq H$, there is some y in G with $\lambda([x,y]) = -1$. Let χ be an irreducible complex character of G lying over λ and let R be a representation of G with character χ . Since $[x,y] \in Z(G)$, we have

$$R([x,y]) = \lambda([x,y])I = -I.$$

It follows then that

$$R(y)^{-1}R(x)R(y) = -R(x).$$

Taking traces, we obtain

$$\chi(x) = \operatorname{trace} R(x) = -\operatorname{trace} R(x) = -\chi(x).$$

We deduce that $\chi(x) = 0$ for all $x \in G - Z(G)$. On the other hand, since Z(G) is an elementary abelian 2–group, Schur's Lemma implies that $\chi(z) = \pm \chi(1)$ for all $z \in Z(G)$. The orthogonality relations give

$$|G| = \sum_{x \in G} |\chi(x)|^2 = \sum_{z \in Z(G)} |\chi(z)|^2 = |Z(G)|\chi(1)^2$$

and this implies that

$$2^s = |G: Z(G)| = \chi(1)^2.$$

This is a contradiction, since it implies that s is even. Thus H equals some H_z , as required.

3. Construction of a central difference set for odd s

Here we show the existence of a central difference set in a group G of Suzuki type and order 2^{2s} whenever $s \geq 3$ is an odd integer. We make use of a very flexible construction due to J.F. Dillon. Let G be a group of order 2^{2s} , where $s \geq 1$. Suppose that G contains a central elementary abelian subgroup H of order 2^{s} . Let $x_0, \ldots, x_{2^{s}-1}$ be a set of coset representatives for H in G, with $x_0 \in H$. Let

$$H_1, \ldots, H_{2^s-1}$$

denote the 2^s-1 different hyperplanes in H. Then the subset D of G defined by

$$D = \bigcup_{i=1}^{2^s - 1} x_i H_i$$

is a difference set in G, [1], p.14.

Theorem 1. Let $s \geq 3$ be an odd integer. Let G be a group of Suzuki type with $|G| = 2^{2s}$. Then G contains a central difference set.

Proof. Let

$$x_1, \ldots, x_{2^s-1}$$

be a system of representatives for those cosets of Z(G) different from Z(G), as defined above. Let H_i denote the hyperplane H_{x_i} . Since any element of G - Z(G) has the form $x_i z$ for some index i and some $z \in Z(G)$, it follows from Lemma 1 that the hyperplanes H_i , where $1 \leq i \leq 2^s - 1$, constitute all the hyperplanes of Z(G). Thus, following Dillon's construction,

$$D = \bigcup_{i=1}^{2^s - 1} x_i H_i$$

is a difference set in G, and it is a union of conjugacy classes, since x_iH_i is the conjugacy class of x_i . We have thus constructed a central difference set in G. \square

4. Non-existence of a central difference set for even s

We intend to show in this section that, although Dillon's construction gives many difference sets in a group G of Suzuki type, there is no *central* difference set when $|G| = 2^{2s}$ and s is even. Thus Lemma 1 is false when s is even. We again employ a character—theoretic argument that we think may be capable of proving the non–existence of central difference sets in other situations.

Lemma 2. Let G be a group of Suzuki type with $|G| = 2^{2s}$ and suppose that s = 2t is a positive even integer. Then G has at least $2(2^{2t} - 1)/3$ irreducible complex characters χ of degree 2^t which vanish on all elements outside Z(G). The kernel of each such χ is a hyperplane of Z(G) and different χ have different kernels.

Proof. Let χ be an irreducible complex character of G. We note that $\chi(1)^2$ divides |G:Z(G)|. See, for example, Problem 3.6 of [2]. It follows that $\chi(1)$ is a divisor of 2^t . Now as G is of Suzuki type it is straightforward to see that G has 2^{2t} central conjugacy classes and $2^{2t+1}-2$ non-central conjugacy classes, each of size 2^{2t-1} . Moreover, as G/Z(G) is elementary abelian of order 2^{2t} , G has at least

 2^{2t} irreducible characters of degree 1. Excluding these linear characters, suppose that G has exactly u irreducible characters of degree dividing 2^{t-1} and exactly v irreducible characters of degree 2^t . Then since the number of irreducible characters of G equals the number of conjugacy classes of G, it follows that $u+v=2^{2t+1}-2$.

Recalling that

$$|G| = 2^{4t} = \sum_{\chi} \chi(1)^2,$$

where the sum extends over all irreducible characters χ of G, we obtain the inequality

$$2^{4t} \le 2^{2t} + u2^{2t-2} + v2^{2t}$$

and hence

$$2^{2t+2} \le 4 + u + 4v = 2^{2t+1} + 2 + 3v.$$

This implies that $v \ge 2(2^{2t} - 1)/3$, as claimed.

Finally, let χ be an irreducible character of G of degree 2^t . We noted in the proof of Lemma 1 that $\chi(z) = \pm \chi(1) = \pm 2^t$ for all $z \in Z(G)$. The orthogonality relations give

$$|G| = 2^{4t} = \sum_{z \in Z(G)} |\chi(z)|^2 + \sum_{x \notin Z(G)} |\chi(x)|^2 = 2^{4t} + \sum_{x \notin Z(G)} |\chi(x)|^2$$

and this equality clearly implies that $\chi(x) = 0$ if $x \in G - Z(G)$. It follows that χ is determined by its restriction to Z(G). We may write $\chi_{Z(G)} = 2^t \lambda$ where λ is a non-trivial linear character of Z(G). The kernel of χ is then the kernel of λ , which is a hyperplane of Z(G). Since λ is determined by its kernel, it is clear that different such χ have different kernels.

We return briefly to a finite multiplicatively–written group G of order v and suppose that D is a (v, k, λ) -difference set in G. Given a non-empty subset S of G, we let \widehat{S} denote the sum

$$\sum_{s \in S} s$$

in $\mathbb{C}G$. The fact that D is a (v, k, λ) -difference set is expressible by the equation

$$\widehat{D}\widehat{D}^{(-1)} = \lambda \widehat{G} + n1_G,$$

where $n = k - \lambda$ is the order of D, and $\widehat{D}^{(-1)}$ is the sum of the inverses of the elements in D.

Suppose now that D is central in G. Let R be a non-trivial irreducible complex representation of G with character χ . We may extend R to a representation of $\mathbb{C}G$, also denoted by R, and in this extended representation, $R(\widehat{D})$ clearly commutes with the elements R(g) for all $g \in G$. Schur's Lemma implies that $R(\widehat{D}) = \mu I$ for some scalar μ . Since $R(\widehat{G}) = 0$, we obtain

$$R(\widehat{D})R(\widehat{D}^{(-1)}) = \mu \overline{\mu}I = \lambda R(\widehat{G}) + nI = nI,$$

so that the scalar μ satisfies $|\mu|^2 = n$. As D is central, it is the union of r, say, conjugacy classes K_1, \ldots, K_r . Each element $R(\widehat{K_i})$ is a scalar multiple of the identity, say $\mu_i I$, and

$$\mu_1 + \dots + \mu_r = \mu.$$

By a well known theorem of Frobenius,

$$\mu_i = \frac{|K_i|\chi(g_i)}{\chi(1)},$$

where g_i is a representative of K_i . Moreover, each μ_i is an algebraic integer. Let $Z(\mathbb{C}G)$ denote the centre of $\mathbb{C}G$. The character χ determines a so-called central character ω_{χ} , which is a homomorphism $Z(\mathbb{C}G) \to \mathbb{C}$ given by

$$\omega_{\chi}(\widehat{K_i}) = \frac{|K_i|\chi(g_i)}{\chi(1)}.$$

Thus the scalar μ_i equals $\omega_{\chi}(\widehat{K}_i)$ and

$$|\omega_{\chi}(\widehat{K}_1) + \dots + \omega_{\chi}(\widehat{K}_r)|^2 = n$$

for all non–principal irreducible characters χ .

We note also the following elementary property of the central characters.

Lemma 3. Let G be a finite group and let N be a normal subgroup of G. Let ψ be an irreducible complex character of G that does not contain N in its kernel. Then $\omega_{\psi}(\widehat{N}) = 0$.

Proof. We first note that N is a union of conjugacy classes of G, so $\widehat{N} \in Z(\mathbb{C}G)$. Suppose that $\omega_{\psi}(\widehat{N}) \neq 0$. It follows that

$$\sum_{g \in N} \psi(g) \neq 0.$$

This implies that the restriction of ψ to N contains the principal character 1_N of N. The irreducibility of ψ , together with Clifford's theorem, imply that N is contained in the kernel of ψ , contrary to assumption. Thus $\omega_{\psi}(\hat{N}) = 0$.

We can now prove our non–existence theorem for central difference sets in groups of Suzuki type when s is even.

Theorem 2. Let $s \geq 2$ be an even integer. Then a group G of Suzuki type with $|G| = 2^{2s}$ contains no non-trivial central difference set.

Proof. Suppose on the contrary that G contains a non-trivial central difference set D. Since the complement of D is also central, we may assume that |D| < |G|/2. Thus Mann's theorem implies that $|D| = 2^{2s-1} - 2^{s-1}$ and the order of D is 2^{2s-2} . Let s = 2t, where t is a positive integer and let χ be an irreducible character of G of degree 2^t , whose existence is guaranteed by Lemma 2. Let $c = |D \cap Z(G)|$ and let D be the union of r conjugacy classes K_1, \ldots, K_r of G. We may assume that the classes K_1, \ldots, K_c are central and the remaining classes are non-central. Since χ vanishes outside Z(G), we have

$$\omega_{\chi}(\widehat{K}_i) = \begin{cases} \varepsilon_i = \pm 1, & \text{if } 1 \leq i \leq c; \\ 0, & \text{if } i > c. \end{cases}$$

It follows that

$$\omega_{\chi}(\widehat{D}) = \varepsilon_1 + \dots + \varepsilon_c = \pm 2^{s-1},$$

since $\omega_{\chi}(\widehat{D})$ is clearly an integer. We note also that $|K_i| = 2^{s-1}$ for i > c. Since D is a union of conjugacy classes, it follows that c is divisible by 2^{s-1} . However, since $|Z(G)| = 2^s$, we see that c is either 2^{s-1} or 2^s . Now the equality $c = 2^s$ implies

that Z(G) is contained in D. We claim that this is impossible. For suppose that Z(G) is contained in D. Then we have

$$\omega_\chi(\widehat{D}) = \omega_\chi(\widehat{Z(G)}) = 0$$

by Lemma 3, since Z(G) is not contained in the kernel of χ . This is a contradiction. Thus $c=2^{s-1}$ and we deduce that $|D\cap Z(G)|=2^{s-1}$.

Let z be any element of $D \cap Z(G)$. It is clear that $z^{-1}D$ is also a central difference set containing the identity. Replacing D by $z^{-1}D$ if necessary, we may assume that the identity of G is in D and we may set K_1 to be the identity class. We now have

$$\omega_{\chi}(\widehat{D}) = \varepsilon_1 + \dots + \varepsilon_{2^{s-1}} = \pm 2^{s-1},$$

where each $\varepsilon_i=\pm 1$ and $\varepsilon_1=1$. It must be the case that each $\varepsilon_i=1$ and hence $D\cap Z(G)$ is contained in the kernel of χ . However, Lemma 2 shows that the kernel of each character χ is a hyperplane in Z(G). Comparing orders, we deduce that $D\cap Z(G)=\ker \chi$. Since different characters χ have different kernels, and there are at least two different χ , by Lemma 2, we have a contradiction. Thus G has no central difference set when s is even.

5. Construction of central difference sets in direct products

We end this note by making a simple observation that shows how to construct further examples of central difference sets in non-abelian 2-groups. Let G_1 and G_2 be finite groups which contain Hadamard difference sets D_1 and D_2 , respectively. Then

$$D = D_1(G_2 - D_2) \cup (G_1 - D_1)D_2$$

is a Hadamard difference set in $G_1 \times G_2$. See, for example, [1], p.13. It is easy to see that D is central if D_1 and D_2 are central. Now any non-trivial difference set in a finite 2-group is Hadamard by Mann's theorem. Thus we see that the class of 2-groups possessing a central difference set is closed under direct products and we may therefore construct further examples of central difference sets in non-abelian 2-groups using the examples described in Theorem 1.

REFERENCES

- [1] J.F. Dillon, Variations on a scheme of McFarland for noncyclic difference sets, J. Combin. Theory Ser. A 40 (1985), 9–21.
- [2] I.M. Isaacs, Character Theory of Finite Groups, Academic Press, New York-San Francisco-London, 1976.
- [3] R.A. Liebler, Constructive representation theoretic methods and non-abelian difference sets, in Difference Sets, Sequences and their Correlation Properties (Bad Winsheim, 1998), 331– 352. NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 542. Kluwer Acad. Publ., Dordrecht, 1999.
- [4] H.B. Mann, Difference sets in elementary abelian groups, Illinois J. Math. 9 (1965), 212–217.

MATHEMATICS DEPARTMENT, UNIVERSITY COLLEGE, BELFIELD, DUBLIN 4, IRELAND *E-mail address*: rod.gow@ucd.ie, rachel.quinlan@ucd.ie