ON THE EXISTENCE OF SPECIAL TYPES OF *p*-BLOCKS IN *p*-SOLVABLE GROUPS

Rod Gow

1. Introduction

Let G be a finite group and let p be a prime divisor of |G|. Let $O_{p'}(G)$ denote the largest normal p'-subgroup of G and $O_p(G)$ the largest normal p-subgroup of G. Let F be an algebraically closed field of characteristic p and let FG denote the group algebra of G over F. Let Z(FG) denote the centre of FG.

We recall that the *p*-blocks of FG may be identified with the primitive central idempotents of FG. Given a *p*-block *B* of FG, determined by the primitive idempotent $e \in Z(FG)$, there is an associated algebra homomorphism $\lambda = \lambda_B : Z(FG) \to F$ satisfying $\lambda(e) = 1$. We call λ the central character of *B*. Let *K* be a conjugacy class of *G* and let $K^+ \in Z(FG)$ be the sum of the elements in *K*. We say that *K* is a defect class for *B* if $\lambda(K^+) \neq 0$ and K^+ occurs with non-zero coefficient in the expression for *e* in terms of the basis of Z(FG) consisting of conjugacy class sums. If *K* is a defect class for *B* and *D* is a Sylow *p*-subgroup of the centralizer of any element of *K*, we call *D* a defect group of *B*. It is a basic theorem of block theory that a different choice of defect class leads to a conjugate defect group. If $|D| = p^d$, the integer *d* is called the defect of *B*.

Suppose that $O_{p'}(G)$ is non-trivial and let K be a conjugacy class of G contained in $O_{p'}(G)$. It is a theorem of Tsushima, [], that K is a defect class for a p-block of FG. More precisely, if $O_{p'}(G)$ contains exactly r conjugacy classes of G, FG has r p-blocks with the property that each of these blocks has a different defect class contained in $O_{p'}(G)$. Furthermore, in the case that

G is *p*-solvable, *FG* has a unique *p*-block, namely the principal block, if and only if $O_{p'}(G)$ is trivial. It follows then that if *G* is *p*-solvable and *FG* has a non-principal *p*-block *B*, *FG* has at least one non-principal *p*-block *B'* with a defect class contained in $O_{p'}(G)$. It is the intention of this paper to give an upper bound for the defect of *B'* in terms of the defect of *B* (we do not know of any canonical association between *B* and *B'* and thus our results are largely existential).

In a previous paper, [], we have shown that if p = 2 and G is 2-solvable and if FG has a 2-block whose defect is less than maximal, then FG has a real non-principal 2-block. The results of this paper enable us to obtain an estimate of the defect of such a real 2-block provided FG has a 2-block whose defect is no bigger than half the maximal possible defect. We remark that real 2-blocks have additional properties, including the concept of an extended defect group, which are not enjoyed by non-real 2-blocks. (A real block is one whose defining central idempotent is fixed by the involutory automorphism of FG generated by the map $x \to x^{-1}$ in G.)

2. Construction of certain p-blocks

We will make use of the following theorem of Knörr, [], to find elements of bounded defect in $O_{p'}(G)$.

LEMMA 1. Let G be a finite group and let N be a normal subgroup of G. Let B be a p-block of FG with defect group D and let b be a p-block of FN covered by B (in the sense of block theory). Then $N \cap D$ is a defect group of b. In particular, the defect of b does not exceed the defect of B.

Using the standard notation, we define the normal subgroup $O_{p'p}(G)$ by

$$O_{p'p}(G)/O_{p'}(G) = O_p(G/O_{p'}(G)).$$

We require the following consequence of the Hall-Higman Lemma 1.2.3, proved in Lemma 3 of []. (We note in the statement of Lemma 3 in [], the hypothesis that $O_{p'p}(G)$ should be isomorphic to $O_{p'}(G) \times O_p(G)$ is irrelevant.)

LEMMA 2. Let G be a p-solvable group and let p^a be the p-part of |G|. Let p^b be the p-part of $O_{p'p}(G)$. Then we have

$$a-b \le f(p,b),$$

where

$$f(p,b) = b - 1 \text{ if } p = 2;$$

= $bp/(p-1)^2$ if p is a Fermat prime;
= $b/p - 1$ otherwise.

We can now proceed to the proof of our main result.

THEOREM 1. Let G be a p-solvable group and let p^a be the p-part of |G|. Suppose that FG has a p-block of defect d. Define a' by

$$a' = (a - 1)/2$$
 if $p = 2$;
= $ap/(p^2 - p + 1)$ if p is a Fermat prime;
= a/p otherwise.

Then FG has a p-block B' of defect at most d + a' with the property that B' has a defect class contained in $O_{p'}(G)$.

Proof. We set $N = O_{p'p}(G)$. By Lemma 1, FN has a block of defect at most d. Thus N contains a p-regular conjugacy class K, say, which has defect at most d in N. Since N is p-nilpotent, K is contained in $O_{p'}(G)$. Let x be an element of K. Then the p-part of $|C_N(x)|$ is at most p^d . It follows that the p-part of $|C_G(x)|$ is at most p^{d+a-b} , where p^b is the p-part of |N|. If we use Lemma 2 to estimate a - b in terms of b, we obtain the inequality $a - b \leq a'$, where a' is defined as above. Thus $O_{p'}(G)$ contains a conjugacy class of G whose defect in G is at most d + a'. Tsushima's theorem now implies that FG has a p-block B' with defect class K and the result follows.

COROLLARY 1. Let G be a 2-solvable group and let 2^a be the 2-part of |G|. Suppose that FG has a 2-block of defect d, where d < (a + 1)/2. Then FG has a real non-principal 2-block of defect at most d + (a - 1)/2 with a defect class contained in $O_{2'}(G)$.

Proof. We have seen from the proof of Theorem 1 that under the given hypotheses, $O_{2'}(G)$ contains a conjugacy class K whose defect is at most d + (a-1)/2, which is less than a. Theorem 5.8 of [] now shows that FG has a real 2-block for which K is a defect class, and this block is not the principal block, as its defect is less than a.

It is clear that Corollary 1 is an existential theorem that gives no obvious connection between the original 2-block and the constructed real 2-block. It may, however, be of interest to look at an example which shows that our result has an appropriate qualitative aspect, even if it is quantitatively imprecise. Let G be the split extension of an elementary abelian group of order 9 by its full automorphism group $\operatorname{GL}_2(3)$. G is a solvable group of order $2^4 3^3$ and $O_{2'}(G)$ is elementary abelian of order 9. Each element of $O_{2'}(G)$ has 2-defect 1. It may be calculated that FG has exactly three 2-blocks, namely the principal block, a block of defect 1 containing two complex characters each of degree 8, and a block B of defect 0 containing an irreducible complex character χ of degree 16. Now let H denote the direct product of r copies of G. The 2-part of |H| is then 2^{4r} and H has a (unique) 2-block of defect 0. Corollary 1 implies that FG has a real 2-block of defect at most 2r - 1 that is weakly regular with respect to $O_{2'}(G)$. As it is easy to see that each element of $O_{2'}(H)$ has 2-defect at least r, and there are elements $O_{2'}(H)$ that have 2-defect exactly r, it follows that any 2-block of FH that is weakly regular with respect to $O_{2'}(H)$ has defect at least r and there is such a 2-block of defect exactly r.

Suppose now that G is an arbitrary group and that B is a 2-block of FG with defect group D. The present author and J. C. Murray have shown in [] that, provided $N_G(D)/D$ has no subgroup isomorphic to a dihedral group of order 8, then FG has a real 2-block with the same defect group. We would like to finish this paper by showing how a related, more precise result can be obtained in the context of 2-solvable groups. The proof is based on the methods used earlier in this paper.

We first prove what must be well-known results.

LEMMA 3. Let G be a finite group and let p be a prime divisor of |G|. Suppose that a Sylow p-subgroup P of G is normal in G. Then we have $C_G(P) = Z(P) \times O_{p'}(G)$, where Z(P) denotes the centre of P.

Proof. We set $C = C_G(P)$. C is certainly normal in G and it contains both Z(P) and $O_{p'}(G)$. Now a Sylow p-subgroup of C is contained in Pand hence equals Z(P). Let H be a Sylow p-complement of Z(P) in C. Hcentralizes Z(P), as it centralizes P, and thus H is normal in C. It follows that H is also normal in G and thus is contained in $O_{p'}(G)$. Since, however, $O_{p'}(G)$ is also contained in H, we have the equality $H = O_{p'}(G)$.

LEMMA 4. Let G be a finite group and let D be a 2-subgroup of G. Let h be a real non-identity 2-regular element of G with defect group D. Suppose that $N_G(D)/D$ is 2-solvable of 2-length 1. Then $h \in O_{2'}(N_G(D))$.

Proof. We set $N = N_G(D)$. We claim that h is real in N. For D has index 2 in a Sylow 2-subgroup E, say, of the extended centralizer of h in G and thus E is contained in N and the elements of $E \setminus D$ invert h. This establishes our claim. Now hD is a real 2-regular element of N/D and as N/D has 2length 1, it follows that $hD \in O_{2'}(N/D)$. Set $H/D = O_{2'}(N/D)$. Then H is normal in N and has a normal Sylow 2-subgroup D. Since h is in H and centralizes D, Lemma 2 implies that $h \in O_{2'}(H)$. But as H is normal in N, it follows that $O_{2'}(H) \leq O_{2'}(N)$ and thus $h \in O_{2'}(N)$, as required.

We now use the Brauer's First Main Theorem to prove the existence of real 2-blocks with prescribed defect group D, provided $N_G(D)/D$ has the structure described in Lemma 3.

THEOREM 2. Let G be a finite group and let D be a 2-subgroup of G. Suppose that $N_G(D)/D$ is 2-solvable of 2-length 1. Then the number of real 2-blocks of FG with defect group D equals the number of real 2-regular conjugacy classes of G with defect group D.

Proof. We set $N = N_G(D)$. Let h_1, \ldots, h_r be representatives of all the real 2-regular conjugacy classes of G which have D as defect group. By Lemma 4, h_1, \ldots, h_r are non-conjugate real 2-regular elements of $O_{2'}(N)$. It follows from Theorem 6.4 of [] that FN has r real 2-blocks with defect group D. As the Brauer correspondence is easily seen to map real 2-blocks of FNinto real 2-blocks of FG, Brauer's First Main Theorem implies that FG has rreal 2-blocks with defect group D. On the other hand, Lemma 3.1 of [] shows that FG has at most r real 2-blocks with defect group D. It follows that the number of real 2-blocks of FG with defect group D is exactly r.

We remark that the hypotheses of Theorem 2 automatically hold if D has index 2 in a Sylow 2-subgroup of G. They also hold if G is 2-solvable and N(D)/D has an abelian Sylow 2-subgroup (or more generally if N(D)/D is 2-solvable and has an abelian Sylow 2-subgroup). We conclude this paper by noting that the reality hypotheses which occur in Theorem 2 are quite natural in the case that N(D)/D has 2-length 1, as the following consequence of [] shows.

THEOREM 3. Let G be a finite group and let D be a 2-subgroup of G. Suppose that $N_G(D)/D$ is 2-solvable of 2-length 1. Then if FG has a 2-block with defect group D, it has a real 2-block with defect group D.

Proof. Suppose that FG has a 2-block with defect group D. By Theorem 3.* of [], G has a real 2-regular class with defect group D. The result now follows from Theorem 2.