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Springs and Triads

In a Nutshell

A mathematical equivalence with a
simple mechanical system
sheds light on the dynamics of
resonant Rossby waves
in the atmosphere.
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The Swinging Spri
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Two distinct oscillatory modes
with distinct restoring forces:

» Elastic or ‘springy’ modes
» Pendular or ‘swingy’ modes
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Two distinct oscillatory modes
with distinct restoring forces:

» Elastic or ‘springy’ modes
» Pendular or ‘swingy’ modes

Take a peek at the Java Applet
http://mathsci.ucd.ie/~plynch/

Spring
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Spring

In a paper in 1981, Breitenberger and Mueller
made the following comment:

“This simple system looks like a toy at best,
but its behaviour is astonishingly complex,
with many facets of more than academic lustre.”

| hope to convince you of the validity of this remark.
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Lagrange’s Equations of Motion

Spring

Joseph Louis Lagrange had a brilliant realization:

The dynamics of a wide range of mechanical systems
are encapsulated in a simple function of the
coordinates:

L=T-V=KE.-PE.
We now call L the Lagrangian.
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Lagrange’s Equations of Motion

Spring

Joseph Louis Lagrange had a brilliant realization:

The dynamics of a wide range of mechanical systems
are encapsulated in a simple function of the
coordinates:
L=T-V=K.E.-P.E.

We now call L the Lagrangian.
The Lagrange equations of motion may be written:

doL_ oL

atog, 9q,
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The Exact Equations for the Spring
In Cartesian coordinates the Lagrangian is
L=T = V=3m(5+ 2+ 22) - 1k(r — o) — mgZ
—_—

[

K E E.P.E G.P.E
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The Exact Equations for the Spring
In Cartesian coordinates the Lagrangian is
L=T = V=3m(5+ 2+ 22) - 1k(r — o) — mgZ
—_—

[

K E E.P.E G.P.E

The equations of motion are (with w2 = k/m):

. r—2¢
X = —u}%( - °>x
. r—/
y = —w%( - 0))’

Z = —w%(r_go)Z—g
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The Exact Equations for the Spring
In Cartesian coordinates the Lagrangian is
L=T = V=3m(5+ 2+ 22) - 1k(r — o) — mgZ
—_—

[

K E E.P.E G.P.E

The equations of motion are (with w2 = k/m):

X = —w%(r_,’%)X

. r—2¢

y = —w%( ; °)y

2? _ __Cug (:r _; £0j> 2? —-£7

Two constants, energy and angular momentum:
E=T+V h=xy—yx.

Spring
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Regular and Chaotic Motion

Two invariants, three DOF:
The system is not integrable.

We consider the phenomenon of Resonance.

For the spring, resonance occurs for
1
wz = 2WR, € = 5"
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Regular and Chaotic Motion

Spring

Two invariants, three DOF:
The system is not integrable.

We consider the phenomenon of Resonance.

For the spring, resonance occurs for

1
wz = 2WR, €=5-
For small amplitudes, the motion is quasi-integrable.

We look at two numerical solutions, one with small irss
amplitude, one with large. v



Horizontal plan: Low energy case




Horizontal plan: High energy case




The Resonant Case

The Lagrangian, to cubic order is:

L=1 (%2 +y%+22) — } (WB(x® + y?) + w32?) + IA(x2 + y?)z,

We study the resonant case:

Wz = 2w,q.
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The Resonant Case

The Lagrangian, to cubic order is:

L=1 (%2 +y%+22) — } (WB(x® + y?) + w32?) + IA(x2 + y?)z,

We study the resonant case:

Wz = 2w,q.

A, Band C are amplitudes in x, y and Z directions. sad
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Spring

Using the Averaged Lagrangian Technique, the

equations for the modulation amplitudes are:
IA = BC,
iB = CA*,
iC = AB,

These are the three-wave interaction equations.
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Ubiquity of Three-Wave Equations

Spring

» Modulation equations for wave interactions in
fluids and plasmas.

» Three-wave equations govern envelop dynamics
of light waves in an inhomogeneous material; and
phonons in solids.

» Maxwell-Schrédinger envelop equations for
radiation in a two-level resonant medium in a
microwave cavity.

» Euler’s equations for a freely rotating rigid body
(when H = 0).
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Analytical Solution of 3-Wave Equations

Spring

We can derive complete analytical expressions
for the amplitudes and phases.

The amplitudes are expressed as elliptic functions.
The phases are expressed as elliptic integrals.
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Analytical Solution of 3-Wave Equations

We can derive complete analytical expressions
for the amplitudes and phases.

The amplitudes are expressed as elliptic functions.
The phases are expressed as elliptic integrals.

The complete details are given in:

Lynch, Peter, and Conor Houghton, 2004

Pulsation and Precession of the Resonant Swinging Spring.
Physica D, 190,1-2, 38-62

(See http://www.maths.tcd.ie/~plynch)
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Vibrations of CO, Molecule

Spring
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Spring

Thie first few wity ati onal ener;

2 x 667 = 1334 ~ 1388

Stretching frequency ~ Twice bending frequency.
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Waves in the Atmosphere
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500 hPa forecast for midday today

ghts (dekameters) vz
(initialized 00Z Fri 27 May 2011)

Univ. of Washington Dept. of Atm.
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Potential Vorticity Conservation

From the Shallow Water Equations, we derive the principle
of conservation of potential vorticity:

d ((+f

a (h ) 0.
where ( is the relative vorticity, f is the planetary vorticity
and h is the fluid depth.
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Potential Vorticity Conservation

From the Shallow Water Equations, we derive the principle
of conservation of potential vorticity:

d ((+f

a (h ) 0.
where ( is the relative vorticity, f is the planetary vorticity
and h is the fluid depth.

Under the assumptions of quasi-geostrophic theory,
the dynamics reduce to an equation for ¢) alone:

P OVEY DY IVPY + 5% _g
ox oy dy Ox ox

0 o2
E[V ¢—F¢]+{

This is the barotropic quasi-geostrophic potential vorticity #&8&
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equation, used to model weather systems. 1\
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Rossby Waves

Wave-like solution of the vorticity equation:
1 = Acos(kx + Ly — ot)

satisfies the equation provided
kj
K2+ 2+ F

This is the celebrated Rossby wave formula

o =

uuuuuu
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Rossby Waves

Wave-like solution of the vorticity equation:
1 = Acos(kx + Ly — ot)

satisfies the equation provided
kj
K2+ +F°

This is the celebrated Rossby wave formula

o =

With more than one wave, the components interact
with each other through the nonlinear terms. v
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Resonant Rossby Wave Triads

Case of special interest: Two wave components
produce a third such that its interaction with each
generates the other.
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Resonant Rossby Wave Triads

Case of special interest: Two wave components
produce a third such that its interaction with each
generates the other.

By a multiple time-scale analysis, we derive the
modulation equations for the wave amplitudes:

iA = BC
iB = CA*
iC = AB -

uuuuuu

[Canonical form of the three-wave equations].
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The Spring Equations
and the
Triad Equations are
are
Mathematically Identical!
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WAVE 1

Components of a resonant Rossby wave triad
All fields are scaled to have unit amplitude.

PVE
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Variation with time of the amplitudes of
three components of the stream function.

Compenent Amplitudas

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
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Stream function at three times during an
integration of duration 7 = 4800 days.
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Left: Horizontal projection of spring solution, y vs. x.

Right: Polar plot of A,,; versus ¢ for resonant triad.
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Left: Horizontal projection of spring solution, y vs. x.

Right: Polar plot of A,,; versus ¢ for resonant triad.
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Take another peek at the Applet! @
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Review

| hope | have convinced you that:

This simple system looks like a toy at best, but
its behaviour is astonishingly complex, with
many facets of more than academic lustre ...
(Breitenberger and Mueller, 1981)

...and that the Swinging Spring is a valuable model
of some important aspects of atmospheric dynamics.
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Banknotes with Mathematicians

[Applied Mathematicians and Physicists]

Notes
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Galileo Galilei

Notes



Isaac Newton

Notes



Christiaan Huygens
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Leonard Euler

Notes



Carl Friedrich Gauss
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Blaise Pascal

Notes



Rene Descartes
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Benjamin Franklin

Notes
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Olivia Newton John

Notes
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Erwin Schrodinger
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Albert Einstein
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ENIAC and PHONIAC
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Charney, et al., Tellus, 1950.

Absolute
Vorticity

Relati Planetar
eatlve} { ane y] n=cif.

Vorticity Vorticity

» The atmosphere is treated as a single layer.
» The flow is assumed to be nondivergent.
» Absolute vorticity is conserved.

d(¢ +f)

a0

PHONIAC



Charney, et al., Tellus, 1950.

Absolute
Vorticity

Relati Planetar
eatlve} { ane y] n=cif.

Vorticity Vorticity

» The atmosphere is treated as a single layer.
» The flow is assumed to be nondivergent.
» Absolute vorticity is conserved.

d(¢ +f)
at

This equation looks simple. But it is nonlinear:

g O OVPY I OVZY o s
a‘[v ¢]+{8_X dy dy 0x +68x_0’ ¥

PHONIAC
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Recreating the ENIAC Forecasts

The ENIAC integrations have been recreated using:

» A MATLAB program to solve the BVE
» Data from the NCEP/NCAR reanalysis

uuuuuu
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Recreating the ENIAC Forecasts

The ENIAC integrations have been recreated using:

» A MATLAB program to solve the BVE
» Data from the NCEP/NCAR reanalysis

The matlab code is available on the author’s website
http://maths.ucd.ie/~plynch/eniac
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MET OFFICE COMPUTER SPEED

Line: Moore’s Law

SX6/'SXs

PHONIAC




MET OFFICE COMPUTER SPEED

SX6/'SXs —_—

" Nokia 6300 ~ Cray I

— IBM360

PHONIAC



Forecasts by PHONIAC

Peter Lynch & Owen Lynch

PHONIAC
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Forecasts by PHONIAC

Peter Lynch & Owen Lynch

A modern hand-held mobile phone has far greater power
than the ENIAC had.

We therefore decided to repeat the ENIAC integrations
using a programmable mobile phone.

uuuuuu
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Forecasts by PHONIAC

Peter Lynch & Owen Lynch
A modern hand-held mobile phone has far greater power
than the ENIAC had.

We therefore decided to repeat the ENIAC integrations
using a programmable mobile phone.

We converted the program ENIAC.M to PHONIAC.JAR, a J2ME
application, and implemented it on a mobile phone.

This technology has great potential for generation and
delivery of operational weather forecast products. ijep>

PHONIAC



PHONIAC: Portable Hand Operated
Numerical Integrator and Computer
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PHONIAC
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Weather, November 2008
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Forecasts by PHONIAC

Peter Lynch’
and Owen Lynch?

University College Dublin, Meteorology
and Climate Centre, Dublin
2Dublin Software Laboratory, IBM ireland

The first computer weather forecasts were
made in 1950, using the ENIAC (Electronic
Numerical Integrator and Computer). The
ENIAC forecasts led to operational numeri-
cal weather prediction within five years, and
paved the way for the remarkable advances
in weather prediction and climate model-
ling that have been made over the past half
century. The basis for the forecasts was the
barotropic vorticity equation (BVE). In the
present studly, we describe the solution of
the BVE on a mobile phone (cell-phone),
and repeat one of the ENIAC forecasts. We
speculate on the possible applications of
mobile phones for micro-scale numerical
weather prediiction.

The ENIAC Integrations

and John von Neumann (1950; cited below
asCFvN). The story of this work was recount-
ed by George Platzman in his Victor P. Starr
Memorial Lecture (Platzman, 1979). The
atmosphere was treated as a single layer,
represented by conditions at the 500 hPa
level, modelled by the BVE. This equation,
expressing the conservation of absolute
vorticity following the flow, gives the rate
of change of the Laplacian of height in
terms of the advection. The tendency of the
height field i obtained by solving a Poisson
equation with homogeneous boundary
conditions. The height field may then be
advanced to the next time level. With a one
hour time-step, this cycle is repeated 24
times for a one-dlay forecast.

The initial data for the forecasts vere pre-
pared manually from standard operational
500 hPa analysis charts of the U.S. Weather
Bureau, discretised to a grid of 19 by 16
points, with grid interval of 736 km. Centred
spatial finite differences and a leapfiog time-
scheme were used. The boundary conditions
for height were held constant throughout
each 24-hour integration. The forecast start-
ing at 0300 utc, January 5, 1949 is shown in

PHONIAC

vorticity. The forecast height and vorticity
are shown in the right panel. The feature of
primary interest was an intense depression
overthe United States. This deepened, mov-
ing NE to the meridian in 24 hours. A
discussion of this forecast, which underesti-
mated the development of the depression,
may be found in CFvN and in Lynch (2008).

Dramatic growth in computing
power

The oft-cited paper in Teffus (CFN) gives
a complete account of the computational
algorithm and discusses four forecast cases.
The ENIAC, which had been completed in
1045, was the first programmable electronic
digital computer ever built. It was agigantic
machine, with 18,000 thermionic valves, fll-
ing alarge room and consuming 140 kW of
po\ver Input and output was by means of
ch-cards. McCartney (1999) provides an
absmblng account of the origins, design,
development and destiny of ENIAC.
Advances in computer technology over
the past half-century have been spectacular.
The increase in computing power is encap-
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A Challenge to you all ...
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Run an NWP model on a Smart Phone

PHONIAC
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A Challenge to you all ...
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Run an NWP model on a Smart Phone

There are many more possibilities for these devices.

PHONIAC
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The Rock’n’roller
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A Bowling-ball from Stillorgan

Spring PVE

Thanks to Brian O’Connor (School of Physics) for slicing the top off
[m] = = =
Notes

PHONIAC
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The Remarkable Rock'n'roller

The rock'n'roller s a rigid body, spherical in form but having an asymmetric distribution of mass. It rolls, without slipping, on a horizontal surface. The moments of ineriia are /, <
1, <I,and the geometric centre lies on the principal axis corresponding to /,

The rock'n'roller has a facinating pattern of behaviour: When released from a tlting position, it rocks back and forth and precesses in the azimuthal direction. But this precession
reverses from time to time, a phenomenon we call recession. Recession represents a dramatic change in the character of the motion arising from a breaking of the inertial
symmetry /,=1,,

Recession can be seen in the animation below, and is fully discussed in a paper in J. Phys. A (see link to PDF below).

The Rock'n'roller

Animation of the Rock'n'roller

N

[Movie produced by Miguel Bustamante]

 Peter Lynch & Miguel D Bustamante, 2009: Precession and Recession of the Rock'n'roller.
J. Phys. A: Math. Theor. 42 (2009) 425203 (25pp). PDF. DOI: 10.1088/1751-8113/42/42
Paber chosen forinclusion in IOP Select
°
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The Physical System

Consider a spherical rigid body with an asymmetric
mass distribution.

Specifically, we consider a loaded sphere.

The dynamics are essentially the same as for the
tippe-top, which has been studied extensively.

Unit radius and unit mass.
Centre of mass off-set a distance a from the centre.

Moments of inertia |4, I, and I3, with |1 =~ |, < 5.
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Symmetric Case: Routh Sphere (l1 = I»)

Xvarsus Y




Asymmetric Case: Rock’n’roller (I,

Xwvarsus Y




The Lagrangian
The Lagrangian of the system is easily written down:

L = 1(hw? + w3 + lw?) + 3(X? + Y2+ 22) — ga(1 — cos §)

The equations may then be written (in vector form):
Y0 =w, Ko =P,

where the matrices X and K are known and

—(g + w2 +wi)asy + (la — ls — af)wows
P, = (g -+ w12 -+ w%)&Sa -+ (|3 — L+ af)w1w3

(|1 — |2)W1 wo + aS(—Xu}1 I Uwg)u)g,

Note that neither K nor P, depends explicitly on ¢.

RnR



Nonholonomic Constraints

Assume nonholonomic constraints

gk(q,m qp) =0

When the constraints are linear in the velocities, we
can write the equations as:

aoL oL Z 09k
at 0g; aq, Mg~

For the Rock’n’roller, we have one holonomic
constraint and two nonholonomic constraints.

RnR
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The enigma of nonholonomic constraints

wver nonhol mic
ed. The

Am. J. Phys., Vol 73, 265-272 (2005)



Constants of Motion for Routh Sphere

The total energy is conserved:

K = 1t + v+ w?]+ I [lhw? + w3 + l3wi] + mga(1 —cos §) .

Jellett’s constant is the scalar product:
C,=L-r=11S(ows + xwz2) + I3f w3 = constant .

where f = cosf — a, o = siny and x = cos 1.

Stephen O’Brien & John L Synge first gave this interpretation

Routh’s constant (difficult to interpret physically):

Cr= [\/Ig + 82+ (l3/14)f?| w3 = constant .

uuuuuu
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Edward J Routh John H Jellett

1831-1907 1817-1888



1OPSEENCE Walcome peterlynch Edi.t account Logout Athens/lnstitutic.)nal login )
Journal of Physics A: Mathematical and Theoretical

Home Search Collections Journals About Contactus My IOPscience

Precession and recession of the rock'n'roller
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Abstract We study the dynamics of a spherical rigid body that rocks and rolls on a plane under the effect of gra
dlstrlbutlon of mass is non- unlform and the centre of mass does not coincide W|th the geometric centre
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Box orbit (left) and loop orbit (right)

RnR
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Quaternionic Formulation

The Euler angles have a singularity when 6 = 0
The angles ¢ and ) are not uniquely defined there.

We can obviate this problem by using Euler’s
symmetric parameters

v = cos 30cos 1 (¢ + ¢) ¢ = sin 30¢os 3(¢ — ¥)
C:COS%QSin%(Qﬁ-i-l/J) n = sin %Qsin %(gzﬁ—w)
There are the components of a unit quaternion
q="+i+nj+ck

e+ =1 ites

Quaternions



Here as he walked by
on the 16th of October 1843
Sir William Rowan Hamilton
in a flash of genius discovered

the fundamental formula for
| quater me.'m n‘.ultll]hcatmn_

| i’= j’= R’= ijR=
& cutit onastone :‘}Ftlnﬂ bridge




Expressions for the angular rates of change:

(&€ +mm) — (v9 + Q)
VE+ )2+ ?)

(=6 & —né
- (559)- (529

5 = (2= _ (&i=mnt

,72_|_<‘2 52_|_772

The components of angular velocity are

wi = 20— &7+ ¢ —nd
we = 2l =i+ — (4]
ws = 2[v¢— ¢y +né— &l

0‘ pum—

Quaternions
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The first-order (small ¢) equations may be written

(2 - o
ﬂ 2

é+(2) ¢ =09
§+ rawaii + Q36+ €¢{(1 = rwa(v€ +¢n) + B (1m = )} =0

i) — kptwaé + Qon — 6/7{(1—H)ws(’YerCﬁ)JFQ%(’YU—Cf)} 0

where ¢ is related to the asymmetry (I, — 11)/l;.

By a simple rotation of coordinates, they can be
transformed to a system with constant coefficients.

Thus, the complete solution can be obtained.

uuuuuu
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Competition

=

Here as he walked by
on the 16th of October 1843
rWilliam Rowan Hamilton
| in a flash of genius discovered
the fundamental formula for
| quater nmn m ultjp[u,atmn‘

R*=ijk =
€ cutit onastone nf'tln.. bridge
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Competition

Here as he walked by
on the I6th of October 1843
Sir William Rowan Hamilton

[ in a flash of genius discovered

IRELAND

the fundamental formula for

quater mrm multjplu,:u:lon_
i’=j’=R*= ijR=-I

€ cutit onastone of'this bridge

i?=j?=k® = ijk =-1

(1) Find [ij-ji]. ~(2)Find 1/[ij-ji]. (3)Findi/j.

uuuuuu

You have two minutes !
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i(ijk) = (ii)jk

=k

= k% = jk = —1
—jk=—i, So jk=i
k= ki=j

Quaternions
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i(ijk) = (ii)jk = —jk = —i, So jk=i

=k jk=i Ki=j
Similarly

Quaternions
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i(ijk) = (ii)jk = —jk = —i, So jk=i

=k jk=i Ki=j
Similarly

Quaternions
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i(ijk) = (ii)jk = —jk = —i, So jk=i

=k jk=i Ki=j
Similarly

Quaternions
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Similarly

i(ijk) = (ii)jk = —jk = —i

=k jk=i

So jk=i
Ki=j
ik =—j

Quaternions
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Discretizing the Sphere

oooooo

RnR Quaternions Sphere
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Challenge: Find a uniform distribution of points —
thousands of them — on a sphere.
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The Five Platonic Solids irss



Distributing points on the sphere

Convex hull, Voronoi cells
and Delaunay triangulation

Covering and packing
with spherical caps

: Interpolatory cubature, cubature
weights and determinants




Conformal Stretched Grid




The Cubed Sphere

Deviation from W deg.
Cabed Sphere 181

Sphere



AVaVayod)
"“'Ae‘#

A4

4
"4y, *" 1‘154
PR RN

Triangulated Icosahedral Grid

uuuuuu



Stretched Icosahedral Gri

Sphere



To make a stretched grid

— Gather the grid points in the north pole
region (left figure)

— Rotate the grid system to the interested
region (right figure)
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Penta-Hexagonal Grid




Yin-Yang grid

Yang (N) zone Yin (E) zone

Yin-Yang composition
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Rectangles, minimal overlap

Overlaps trimmed to median
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BUBLIN

Sphere
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Fibonacci Grid
Inspired by Sun-flowers and Pineapples




The ultimate grid remains elusive.

This is your big chance of fame.
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