George Gabriel Stokes’s Fundamental Contributions to Fluid Dynamics

Peter Lynch
School of Mathematics & Statistics
University College Dublin

IHoM V, Maynooth, 2 August 2019
Outline

George Gabriel Stokes

New Book on Stokes

Navier-Stokes Equations

Campbell-Stokes Sunshine Recorder

Stokes and the Royal Society

Weather Forecasting Today

Finis
Outline

George Gabriel Stokes

New Book on Stokes

Navier-Stokes Equations

Campbell-Stokes Sunshine Recorder

Stokes and the Royal Society

Weather Forecasting Today

Finis
George Gabriel Stokes, 1819–1903

George Gabriel Stokes,
founder of modern hydrodynamics.
George Gabriel Stokes was born in Skreen, Co. Sligo on 13 August 1819. He was the youngest of seven children of Rev. Gabriel Stokes, Rector of the Church of Ireland.

From an early age, Stokes showed signs of brilliance:

His school-teacher wrote that “Master George was working out new ways of doing sums, far better than those given in the book.”
The ‘Old’ Rectory at Skreen
Descendants of Gabriel Stokes (1682–1768), Great-grandfather of GGS

Fig. 1.2 The academic descendants of Gabriel Stokes (1682–1768).
Childhood and Education

- Educated in Skreen, Dublin and Bristol.
- 1837: Pembroke College in Cambridge.
- 1841: Graduated as Senior Wrangler. First place in Mathematical Tripos. Winner of the Smith’s Prize.
Childhood and Education

- Educated in Skreen, Dublin and Bristol.
- 1837: Pembroke College in Cambridge.
- 1841: Graduated as Senior Wrangler. First place in Mathematical Tripos. Winner of the Smith’s Prize.

Success in Tripos a passport to a great career:

A relative wrote that Stokes had only “...to decide whether he would be Prime Minister, Lord Chancellor or Archbishop of Canterbury.”
Stokes as Senior Wrangler (1841)
1841: Elected a Fellow of Pembroke College.

1849: Appointed Lucasian Professor of Mathematics.

Stokes held this chair for over fifty years.
The Lucasian Chair of Mathematics

Table of Lucasian Professors of Mathematics

<table>
<thead>
<tr>
<th>Professor</th>
<th>Years</th>
<th>Professor</th>
<th>Years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isaac Barrow</td>
<td>1663–9</td>
<td>Charles Babbage</td>
<td>1828–39</td>
</tr>
<tr>
<td>Isaac Newton</td>
<td>1669–1702</td>
<td>Joshua King</td>
<td>1839–49</td>
</tr>
<tr>
<td>William Whiston</td>
<td>1702–10</td>
<td>George Gabriel Stokes</td>
<td>1849–1903</td>
</tr>
<tr>
<td>Nicholas Saunderson</td>
<td>1711–39</td>
<td>Joseph Larmor</td>
<td>1903–32</td>
</tr>
<tr>
<td>John Colson</td>
<td>1739–60</td>
<td>Paul Dirac</td>
<td>1932–69</td>
</tr>
<tr>
<td>Robert Woodhouse</td>
<td>1820–2</td>
<td>Brian Green</td>
<td>2009–15</td>
</tr>
<tr>
<td>Thomas Turton</td>
<td>1822–6</td>
<td>Michael Cates</td>
<td>2015–</td>
</tr>
<tr>
<td>George Airy</td>
<td>1826–8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
In 1859 Stokes married Mary Susannah, daughter of Thomas Romney Robinson, astronomer at Armagh Observatory.

George and Mary had five children.
Stokes’s Collected Works, in 5 volumes, include some 140 papers.
In his book *Hydrodynamics*, (6th edition), Horace Lamb has more than 50 page references to Stokes.

A meaningful H-Factor?
Some Contributions of Stokes

- Stokes’ Theorem
- Stokes Drag
- Stokes’ Law
- Stokes Drift
- Stokes Waves
- Stokes Parameters
- Stokes Phenomenon
- Campbell-Stokes Sunshine Recorder
- The Navier-Stokes Equations
Stokes’ Theorem

\[\oint_{\Gamma} \mathbf{V} \cdot d\mathbf{l} = \iint_{\Sigma} \nabla \times \mathbf{V} \cdot \mathbf{n} \, da. \]

Stokes’ Theorem was actually discovered by Kelvin in 1854. It’s of central importance in fluid dynamics.

It played a rôle in the development of V. Bjerknes’ Circulation Theorem:

\[\frac{dC}{dt} = - \iint_{\Sigma} \nabla \frac{1}{\rho} \times \nabla p \cdot da = - \oint_{\Gamma} \frac{dp}{\rho}, \]

which generalized Kelvin’s Circulation Theorem to baroclinic fluids (\(\rho \) varying independently of \(p \)), and ushered in the study of Geophysical Fluid Dynamics.
Stokes Drag and Stokes’ Law

A Child’s Query:

Son: Daddy, why don’t clouds fall down?
Dad: Clouds do fall, but very slowly!

Stokes formulated the drag law for small particles:

$$F = 6\pi \mu rv$$

This leads an expression for the terminal velocity:

$$v_s = \frac{2r^2 \rho g}{9\mu}$$

A droplet of radius 5 microns falls with a terminal speed of about 3 mm/s (about four days for 1 km).
Stokes Drag and Stokes’ Law

A Child’s Query:
Son: Daddy, why don’t clouds fall down?
Dad: Clouds do fall, but very slowly!

Stokes formulated the **drag law** for small particles:

\[F = 6\pi \mu rv \]

This leads an expression for the **terminal velocity**:

\[v_s = \frac{2r^2 \rho g}{9\mu} \]

A droplet of radius 5 microns falls with a terminal speed of about 3 mm/s (about four days for 1 km).
Stokes Flow is steady flow in which there is a balance between the viscous and pressure gradient forces:

\[\nu \nabla^2 V = \frac{1}{\rho} \nabla p. \]

This balance may be valid for small Reynolds Number.

This balance leads to Stokes’ Paradox: Such flow is not possible everywhere. The effect of an obstacle is felt at large distances: inertial terms are important.
Chapter 1 of the book is entitled **HYDRODYNAMICAL PARADOXES.**

By a *Paradox*, we mean a plausible argument that yields conclusions at variance with observations.

In fluid systems paradoxes often arise because:

- Arbitrarily small causes can produce finite effects
- An apparent symmetry of causes is not necessarily preserved in the effects.
Some Paradoxes in Hydrodynamics

- D’Alembert’s Paradox
- The Reversibility Paradox
- Paradoxes of Airfoil Theory
- The Rayleigh Paradox
- Von Neumann’s Paradox
- Kopal’s Paradox
- The Eiffel Paradox
- The Rising Bubble Paradox
- The Magnus Effect Paradox
- Stokes’ Paradox
Euler’s Equations

Leonhard Euler, born on 15 April, 1707 in Basel. Died on 18 September, 1783 in St Petersburg.

Euler formulated the equations for incompressible, inviscid fluid flow:

\[
\frac{\partial \mathbf{V}}{\partial t} + \mathbf{V} \cdot \nabla \mathbf{V} + \frac{1}{\rho} \nabla \rho = \mathbf{g}.
\]

\[
\nabla \cdot \mathbf{V} = 0
\]
A body moving at constant speed through a gas or a fluid does not experience any resistance (d’Al. 1752).
Jean Le Rond d’Alembert

D’Alembert expressed his concerns thus:

“I do not see how one can satisfactorily explain, by theory, the resistance of fluids.”

He remarked that the theory leads to “a singular paradox which I leave to future geometers for elucidation.”
Hypothetical Fluid Flow

Purely Inviscid Flow.
Upstream-downstream symmetry.
Actual Fluid Flow

Viscous Flow.
Strong upstream-downstream asymmetry.
Resolution of d’Alembert’s Paradox

The minutest amount of viscosity has a profound qualitative impact on the character of the solution.

The N-S equations incorporate the effect of viscosity.
Outline

George Gabriel Stokes

New Book on Stokes

Navier-Stokes Equations

Campbell-Stokes Sunshine Recorder

Stokes and the Royal Society

Weather Forecasting Today

Finis
Stokes: Life, Science and Faith

Table of Contents

1. Biographical Introduction
 Alastair Wood
2. The Stokes Family in Ireland and Cambridge
 Michael C. W. Sandford
3. ‘Stokes of Pembroke S.W. & a very good one’: The Mathematical Education of George Gabriel Stokes
 June Barrow-Green
4. Stokes’s Optics 1: Waves in Luminiferous Media
 Olivier Darrigol
5. Stokes’s Optics 2: Other Phenomena in Light
 Olivier Darrigol
6. Stokes’s Fundamental Contributions to Fluid Dynamics
 Peter Lynch
7. Stokes’s Mathematical Work
 Richard B. Paris
8. Stokes and the Royal Society
 Sloan Evans Despeaux
9. Stokes and Engineering: The Analysis of the Structure of Railway Bridges and Their Collapse
 Andrew Whitaker
10. Faith and Thought: Stokes as a Religious Man of Science
 Stuart Mathieson
11. The Scientific Legacy of George Gabriel Stokes
 Andrew Fowler
Outline

George Gabriel Stokes

New Book on Stokes

Navier-Stokes Equations

Campbell-Stokes Sunshine Recorder

Stokes and the Royal Society

Weather Forecasting Today

Finis
C. L. M. H. Navier, 1785–1836

Claude Louis Marie Henri Navier

Article on Navier’s collapsing bridge.
Basic Publications and Review

Navier, C. L. M. H., 1822:
Mémoire sur les lois du mouvement des fluides.

Stokes, G. G., 1845:
On the theories of the internal friction of fluids in motion.

⋆ ⋆ ⋆
Basic Publications and Review

Navier, C. L. M. H., 1822:
Mémoire sur les lois du mouvement des fluides.

Stokes, G. G., 1845:
On the theories of the internal friction of fluids in motion.

⋆ ⋆ ⋆

Between Hydrodynamics and Elasticity Theory: The First Five Births of the Navier-Stokes Equation.
The Navier-Stokes Equations

\[
\frac{\partial \mathbf{V}}{\partial t} + \mathbf{V} \cdot \nabla \mathbf{V} + \frac{1}{\rho} \nabla p = \nu \nabla^2 \mathbf{V}.
\]

The Navier-Stokes Equations describe how the change of velocity (the acceleration) is determined by the pressure gradient force and frictional force.
The Navier-Stokes Equations

\[\frac{\partial \mathbf{V}}{\partial t} + \mathbf{V} \cdot \nabla \mathbf{V} + \frac{1}{\rho} \nabla p = \nu \nabla^2 \mathbf{V}. \]

The Navier-Stokes Equations describe how the change of velocity (the acceleration) is determined by the pressure gradient force and frictional force.

For motion relative to the rotating earth, we include gravity and the Coriolis force:

\[\frac{\partial \mathbf{V}}{\partial t} + \mathbf{V} \cdot \nabla \mathbf{V} + 2\Omega \times \mathbf{V} + \frac{1}{\rho} \nabla p = \nu \nabla^2 \mathbf{V} + \mathbf{g}. \]
Outline

George Gabriel Stokes

New Book on Stokes

Navier-Stokes Equations

Campbell-Stokes Sunshine Recorder

Stokes and the Royal Society

Weather Forecasting Today

Finis
An Early Sunshine Recorder

Athanasius Kircher was Professor of Mathematics and Hebrew at the *Collegio Romano*.

Around 1646 he devised a recording sundial called the *Horologium Haecistaicicum*.
The Horologium Helio-causticum

A Sundial is drawn in the shell, “together with things for burning and making sounds.”

“With light and sound the glassy sphere shows thee the hours; truly, it is the work of the heavenly fire.”
Campbell’s Sunshine Recorder.

Fig. 1.—Section of Mr. Campbell’s original Sunshine Recorder.

Fig. 2.—Wooden Sunshine Bowl.

The “self-registering sundial” of J. F. Campbell (c. 1853).
Robert Scott, born in Dublin, was founder of Valentia Observatory and first Director of the British Met Office.

Scott proposed some improvements to Campbell’s sunshine recorder.

The detailed design was due to G. G. Stokes.
“The method of recording sunshine by the burning of an object placed in the focus of a glass sphere freely exposed to the rays of the sun, which was devised by Mr. Campbell, commends itself by its simplicity, and seems likely to come into pretty general use.”
Description of the Card Supporter for Sunshine Recorders adopted at the Meteorological Office

George Gabriel Stokes
Quarterly Journal of the Royal Meteorological Society,
Vol. 6 (1880) 83–94.

In the discussion following the reading of the paper, a Mr. Mawley remarked:

“The fact of this sunshine-recorder being in all respects an English invention, adds much to its interest.”
Campbell-Stokes Sunshine Recorder

No moving parts.
Campbell-Stokes Sunshine Recorder

No moving parts.

One moving part!
(In Biblical Coordinates)
George Gabriel Stokes

New Book on Stokes

Navier-Stokes Equations

Campbell-Stokes Sunshine Recorder

Stokes and the Royal Society

Weather Forecasting Today

Finis
Royal Society

1851: Stokes elected a Fellow of the Royal Society.
(Along with William Thomson, Thomas H. Huxley and John Tyndall.)

1854–1884: Stokes Secretary of the Royal Society
President from 1885 to 1890.

“I am naturally of rather a retiring character, and should feel not a little out of my element in being brought so prominently forward.”

Stokes to Th. R. Robinson.

T. H. Huxley criticised Stokes for his “ultra-conservative and theological viewpoint.”
Stokes as President of Royal Society
President of Royal Society
Prominent Members of the Royal Society
Royal Society

William Thomson followed Stokes as PRS. Stokes awarded Copley Medal in 1893.

Fig. 8.4 The Royal Society Copley Medal awarded to Stokes in 1893. Image courtesy Nick Lefebvre.
Outline

George Gabriel Stokes
New Book on Stokes
Navier-Stokes Equations
Campbell-Stokes Sunshine Recorder
Stokes and the Royal Society

Weather Forecasting Today

Finis
Equations of the Atmosphere

GAS LAW (Boyle’s Law and Charles’ Law.)

GAS LAW (Boyle’s Law and Charles’ Law.)

Relates the pressure, temperature and density

CONTINUITY EQUATION

Conservation of mass; air not created or destroyed

WATER CONTINUITY EQUATION

Conservation of water (liquid, solid and gas)

EQUATIONS OF MOTION: Navier-Stokes Equations

EQUATIONS OF MOTION: Navier-Stokes Equations

Describe how the change of velocity is determined by the pressure gradient, Coriolis force and friction

THERMODYNAMIC EQUATION

THERMODYNAMIC EQUATION

Changes of temperature due to heating, cooling, compression, rarification, etc.

Seven equations; seven variables \((u, v, w, \rho, p, T, q)\).
The atmosphere is a physical system

Its behaviour is governed by the laws of physics

These laws are expressed quantitatively in the form of mathematical equations

Using observations, we can specify the atmospheric state: "Today’s Weather"

Using the equations, we can calculate how this state changes with time: "Tomorrow’s Weather"
Long-term Skill Growth

NCEP Operational Forecast Skill
36 and 72 Hour Forecasts @ 500 MB over North America
[100 * (1 - S1/70) Method]
Forecast of Hurricane Sandy

Figure: Landfall, New Jersey, 30 October 2012
Outline

George Gabriel Stokes

New Book on Stokes

Navier-Stokes Equations

Campbell-Stokes Sunshine Recorder

Stokes and the Royal Society

Weather Forecasting Today

Finis
Stokes never forgot his origins in Skreen.

He returned to Sligo and elsewhere in Ireland regularly for summer vacations.

In one of his heavily mathematical papers he wrote of “the surf that breaks upon the western coasts as a result of storms out in the Atlantic”, recalling the majestic rollers thundering in as he strolled as a boy along Dunmoran Strand.
Thank you