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Outline of Talk

�Stokes’ Contributions (c. 1850)

�The Pre-history of Numerical Weather
Prediction (c. 1900)

�The ENIAC Integrations (c. 1950)

�Modern Computer Forecasting (c. 2000)
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C. L. M. H. Navier, 1785–1836

Claude Louis Marie Henri Navier
See Notices of the American Mathematical Society, Vol 50, 7– 13 (Jan. 2003).

Article on Navier’s collapsing bridge.
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George G Stokes, 1819–1903

George Gabriel Stokes, founder of modern hydrodynamics.
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A crude but indicative metric

In his book Hydrodynamics,
(6th edition), Horace Lamb

has more than 50 page
references to Stokes.
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Some Contributions of Stokes

to Meteorological Science.

�Stokes’ Theorem

�Stokes Drag and Stokes’ Law

�Stokes Drift

�Stokes Waves

�Campbell-Stokes Sunshine Recorder

�Navier-Stokes Equations
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Stokes’ Theorem

∮
Γ
V·dl =

∫ ∫
Σ
∇×V · n da .

Stokes’ Theorem was actually discovered by Kelvin in 1854.
It is of central importance in fluid dynamics. It played a

rôle in the development of Bjerknes’ Circulation Theorem:

dC

dt
= −

∫ ∫
Σ
∇1

ρ
×∇p·da = −

∮
Γ

dp

ρ
,

which generalized Kelvin’s Circulation Theorem to baro-
clinic fluids (ρ varying independently of p), and ushered in
the study of Geophysical Fluid Dynamics.
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Innocent Questions — and —
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Innocent Questions — and —

The Victorian Father’s Responses

Son: Pater, why is the sky blue?
Father: Son, you must study the works of
John Tyndall.
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Innocent Questions — and —

The Victorian Father’s Responses

Son: Pater, why is the sky blue?
Father: Son, you must study the works of
John Tyndall.

Son: Pater, why don’t clouds fall down?
Father: Son, you must study the works of
George Stokes.
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Stokes Drag and Stokes’ Law
A more helpful answer:

Son: Daddy, why don’t clouds fall down?
Dad: Clouds do fall, but very slowly!
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Stokes Drag and Stokes’ Law
A more helpful answer:

Son: Daddy, why don’t clouds fall down?
Dad: Clouds do fall, but very slowly!

Stokes formulated the drag law for small particles in a fluid.

F = 6πµrv

This leads an expression for the terminal velocity:

vs =
2r2ρg

9µ

A particle of radius 5 microns falls with a terminal speed
of about 3 mm/s. Thus, it takes about four days to fall
through one kilometre.

Stokes’ Law was important for Millikan’s oil-drop experiment, to measure e/m.
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Stokes Flow

Stokes Flow is steady flow in which there is a balance be-
tween the viscous and pressure gradient forces:

ν∇2V =
1

ρ
∇p .

This balance may be valid for small Reynolds Number.

This balance leads to Stokes’ Paradox: Such flow is not
possible everywhere. The effect of an obstacle is felt at
large distances. Inertial terms are important somewhere.
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Hydrodynamics: A study in Logic, Fact and Similitude

by Garrett Birkhoff

Chapter 1 of the book is entitled

Hydrodynamical Paradoxes.

By a Paradox, we mean A plausible argument that yields
conclusions at variance with observations.

In fluid systems paradoxes often arise because:

• Arbitrarily small causes can produce finite effects

• An apparent symmetry of causes is not necessarily pre-
served in the effects

12



Some Paradoxes in Hydrodynamics

• D’Alembert’s Paradox

• The Reversibility Paradox

• Paradoxes of Airfoil Theory

• The Rayleigh Paradox

• Von Neumann’s Paradox

• Kopal’s Paradox

• The Eiffel Paradox

• The Rising Bubble Paradox

• The Magnus Effect Paradox

• Stokes’ Paradox
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Euler’s Equations

Leonhard Euler, born on 15
April, 1707 in Basel. Died on
18 September, 1783 in St Pe-
tersburg.
Euler formulated the equa-
tions for incompressible, in-
viscid fluid flow:

∂V

∂t
+ V · ∇V +

1

ρ
∇p = g .

∇ ·V = 0
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Jean Le Rond d’Alembert

A body moving at constant speed through a gas or a fluid
does not experience any resistance (D’Alembert 1752).
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Hypothetical Fluid Flow

Purely Inviscid Flow. Upstream-downstream symmetry.
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Actual Fluid Flow

Viscous Flow. Strong upstream-downstream assymmetry.
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Resolution of d’Alembert’s Paradox

The minutest amount of viscosity has a profound
qualitative impact on the character of the solution.

The Navier-Stokes equations incorporate the effect of
viscosity.
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The Campbell-Stokes
Sunshine Recorder
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An Early Sunshine Recorder

Athanasius Kircher was Pro-
fessor of Mathematics and
Hebrew at the Collegio Ro-
mano. Around 1646 he
devised a recording sundial
called the Horologium Helio-
causticum.
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The Horologium Helio-causticum

A Sundial is drawn in the shell, “together with things for
burning and making sounds.”

With Light and sound the glassy sphere shows thee the
hours; Truly, it is the work of the heavenly fire.
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Campbell’s Sunshine Recorder.

The “self-registering sundial” of J. F. Campbell (c. 1853).
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Robert Henry Scott (1833–1916)

Robert Scott, born in Dublin,
was founder of Valentia Ob-
servatory and first Director of
the British Meteorological Of-
fice.

Scott proposed some im-
provements to Campbell’s
sunshine recorder.

The detailed design of the instrument was due to Stokes.
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Stokes’ Quarterly Journal Paper

Description of the Card Supporter for Sunshine Recorders
adopted at the Meteorological Office

George Gabriel Stokes
Quarterly Journal of the Royal Meteorological Society, Vol. 6 (1880) 83–94.

“The method of recording sunshine by the burning of an object placed

in the focus of a glass sphere freely exposed to the rays of the sun,

which was devised by Mr. Campbell, commends itself by its simplicity,

and seems likely to come into pretty general use.”
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Stokes’ Quarterly Journal Paper

Description of the Card Supporter for Sunshine Recorders
adopted at the Meteorological Office

George Gabriel Stokes
Quarterly Journal of the Royal Meteorological Society, Vol. 6 (1880) 83–94.

“The method of recording sunshine by the burning of an object placed

in the focus of a glass sphere freely exposed to the rays of the sun,

which was devised by Mr. Campbell, commends itself by its simplicity,

and seems likely to come into pretty general use.”

In the discussion following the reading of the paper, a
Mr. Mawley remarked:

“The fact of this sunshine-recorder being in all respects an English

invention, adds much to its interest.”
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Campbell-Stokes Sunshine Recorder.

One moving part!
(In Biblical Coordinates)
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The Navier-Stokes Equations
Navier, C. L. M. H., 1822: Mémoire sur les lois du mouvement des fluides.

Mém. Acad. Sci. Inst. France, Vol. 6, 389–440.

Stokes, G. G., 1845: On the theories of the internal friction of fluids in motion.

Trans. Cambridge Philos. Soc., Vol. 8.
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Navier-Stokes Equations

∂V

∂t
+ V · ∇V +

1

ρ
∇p = ν∇2V + g? .

The Navier-Stokes Equations describe how the change of

velocity, the acceleration of the fluid, is determined by the
pressure gradient force, the gravitational force and the fric-
tional force.
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Navier-Stokes Equations

∂V

∂t
+ V · ∇V +

1

ρ
∇p = ν∇2V + g? .

The Navier-Stokes Equations describe how the change of

velocity, the acceleration of the fluid, is determined by the
pressure gradient force, the gravitational force and the fric-
tional force.

For motion relative to the rotating earth, we must include
the Coriolis force:

∂V

∂t
+ V · ∇V + 2Ω×V +

1

ρ
∇p = ν∇2V + g .
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Equations of the Atmosphere
GAS LAW (Boyle’s Law and Charles’ Law.)
Relates the pressure, temperature and density
CONTINUITY EQUATION
Conservation of mass; air neither created nor distroyed
WATER CONTINUITY EQUATION
Conservation of water (liquid, solid and gas)
HYDROSTATIC LAW
Balance between gravity and vertical pressure gradient
EQUATIONS OF MOTION: Navier-Stokes Equations
Describe how the change of velocity is determined by the
pressure gradient, Coriolis force and friction

Six equations; Seven variables (u, v, w, ρ, p, T, q).
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Equations of the Atmosphere
GAS LAW (Boyle’s Law and Charles’ Law.)
Relates the pressure, temperature and density
CONTINUITY EQUATION
Conservation of mass; air neither created nor distroyed
WATER CONTINUITY EQUATION
Conservation of water (liquid, solid and gas)
HYDROSTATIC LAW
Balance between gravity and vertical pressure gradient
EQUATIONS OF MOTION: Navier-Stokes Equations
Describe how the change of velocity is determined by the
pressure gradient, Coriolis force and friction

Six equations; Seven variables (u, v, w, ρ, p, T, q).

THERMODYNAMIC EQUATION
Determines changes of temperature due to heating or cool-
ing, compression or rarifaction, etc.
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The Hairy Men of Thermo-D

It would appear from this sample that a fulsome beard may serve as a thermometer of proficiency in thermodynamics.

However, more exhaustive research is required before a definitive conclusion can be reached.
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Scientific Weather Forecasting in a Nut-Shell

• The atmosphere is a physical system

• Its behaviour is governed by the laws of physics

• These laws are expressed quantitatively in the form of
mathematical equations

• Using observations, we can specify the atmospheric state
at a given initial time: “Today’s Weather”

• Using the equations, we can calculate how this state will
change over time: “Tomorrow’s Weather”

• The equations are very complicated (non-linear) and a
powerful computer is required to do the calculations

• The accuracy decreases as the range increases; there is
an inherent limit of predictibility.
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Vilhelm Bjerknes (1862–1951)
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Vilhelm Bjerknes (1862–1951)

• Born March, 1862.
• Matriculated in 1880.
• Fritjøf Nansen was a fellow-student.
• Paris, 1989–90. Studied under Poincare.
• Bonn, 1890–92. Worked with Heinrich Hertz.
• Stockholm, 1983–1907.

Vilhelm Bjerknes
– 1898: Circulation theorems

– 1904: Meteorological Manifesto
• Christiania (Oslo), 1907–1912.
• Leipzig, 1913–1917.
• Bergen, 1917–1926.

– 1919: Frontal Cyclone Model.
• Oslo, 1926 — (retired 1937).

• Died, April 9,1951.
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Bjerknes’ 1904 Manifesto
To establish a science of meteorology, with the central aim of
predicting future states of the atmosphere from the present
state.
“If it is true, as every scientist believes, that subsequent atmospheric

states develop from the preceeding ones according to physical law, then

it is apparent that the necessary and sufficient conditions for the rational

solution of forecasting problems are the following:

1. A sufficiently accurate knowledge of the state of the at-
mosphere at the initial time

2. A sufficiently accurate knowledge of the laws according
to which one state of the atmosphere develops from an-
other.”

Step (1) is Diagnostic. Step (2) is Prognostic.
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Bjerknes ruled out analytical solution of the mathematical
equations, due to their nonlinearity and complexity:

“For the solution of the problem in this form, graphical
or mixed graphical and numerical methods are appropri-
ate, which methods must be derived either from the partial
differential equations or from the dynamical-physical prin-
ciples which are the basis of these equations.”

However, there was a scientist more bold — or foolhardy
— than Bjerknes, who actually tried to calculate future
weather. This was Lewis Fry Richardson
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Lewis Fry Richardson, 1881–1953.
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• Born, 11 October, 1881, Newcastle-upon-Tyne

• Family background: well-known quaker family

• 1900–1904: Kings College, Cambridge

• 1913–1916: Met. Office. Superintendent,
Eskdalemuir Observatory

• Resigned from Met Office in May, 1916.
Joined Friends’ Ambulance Unit.

• 1919: Re-employed by Met. Office

• 1920: M.O. linked to the Air Ministry.
LFR Resigned, on grounds of concience

• 1922: Weather Prediction by Numerical Process

• 1926: Break with Meteorology.
Worked on Psychometric Studies.
Later on Mathematical causes of Warfare

• 1940: Resigned to pursue “peace studies”

• Died, September, 1953.

Richardson contributed to Meteorology, Numerical Analysis, Fractals,

Psychology and Conflict Resolution.
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The Finite Difference Scheme
The globe is divided into cells, like the check-
ers of a chess-board.
Spatial derivatives are replaced by finite dif-
ferences:

df

dx
→ f (x + ∆x)− f (x−∆x)

2∆x
.

Similarly for time derivatives:

dQ

dt
→ Qn+1 −Qn−1

2∆t
= Fn

This is immediately solved for Qn+1:

Qn+1 = Qn−1 + 2∆tFn .
By repeating the calculations for many time steps, we can
get a forecast of any length. Richardson calculated only the
initial rates of change.
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The Leipzig Charts for 0700 UTC, May 20, 1910

Bjerknes’ sea level pressure
analysis.

Bjerknes’ 500 hPa height
analysis.
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Richardson’s Spread-sheet

Richardson’s Computing Form PXIII
The figure in the bottom right corner is the forecast

change in surface pressure: 145 mb in six hours!
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Smooth Evolution of Pressure
x
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Noisy Evolution of Pressure
x
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Tendency of a Smooth Signal
x
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Tendency of a Noisy Signal
x
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Richardson’s Forecast Factory (A. Lannerback).
Dagens Nyheter, Stockholm. Reproduced from L. Bengtsson, ECMWF, 1984
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Richardson’s Forecast Factory (A. Lannerback).
Dagens Nyheter, Stockholm. Reproduced from L. Bengtsson, ECMWF, 1984

64,000 Computers: The first Massively Parallel Processor
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Advances 1920–1950

�Dynamic Meteorology

� Rossby Waves

� Quasi-geostrophic Theory

� Baroclinic Instability

�Numerical Analysis

� CFL Criterion

�Atmopsheric Observations

� Radiosonde

�Electronic Computing

� ENIAC
45
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The ENIAC
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Electronic Computer Project, 1946
(under direction of John von Neumann)
Von Neumann’s idea:
Weather forecasting was, par excellence, a scientific problem
suitable for solution using a large computer.

The objective of the project was to study the problem of
predicting the weather by simulating the dynamics of the
atmosphere using a digital electronic computer.

A Proposal for funding listed three “possibilities”:

1. Entirely new methods of weather prediction by calcula-
tion will have been made possible;

2. A new rational basis will have been secured for the plan-
ning of physical measurements and field observations;

3. The first step towards influencing the weather by rational
human intervention will have been made.
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“Conference on Meteorology”
A “Conference on Meteorology” was arranged in the Insti-
tute for Advanced Studies (IAS), Princeton on 29–30 Au-
gust, 1946.

Participants included:

• Carl Gustav Rossby

• Jule Charney

• George Platzman

• Norman Phillips

• Ragnar Fjørtoft

• Arnt Eliassen

• Joe Smagoinsky

• Phil Thompson
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Evolution of the Project:

• Plan A: Integrate the Primitive Navier-Stokes Equations

Problems similar to Richardson’s would arise

• Plan B: Integrate baroclinic Q-G System

Too computationally demanding

• Plan C: Solve barotropic vorticity equation

Very satisfactory initial results
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The ENIAC

The ENIAC (Electronic Nu-
merical Integrator and Com-
puter) was the first multi-
purpose programmable elec-
tronic digital computer.
It had:

• 18,000 vacuum tubes

• 70,000 resistors

• 10,000 capacitors

• 6,000 switches

Power Consumption: 140 kWatts

50



The ENIAC: Technical Details.
ENIAC was a decimal machine. No high-level language.
Assembly language. Fixed-point arithmetic: −1 < x < +1.
10 registers, that is,
Ten words of high-speed memory.
Function Tables:
624 6-digit words of “ROM”, set on
ten-pole rotary switches.
“Peripheral Memory”:
Punch-cards.
Speed: FP multiply: 2ms
(say, 500 Flops).
Access to Function Tables: 1ms.
Access to Punch-card equipment:
You can imagine!
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Charney Fjørtoft von Neumann
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Charney, et al., Tellus, 1950.[
Absolute

Vorticity

]
=

[
Relative

Vorticity

]
+

[
Planetary

Vorticity

]
η = ζ + f .

The atmosphere is treated as a single layer, and the flow is
assumed to be nondivergent. Absolute vorticity is conserved
following the flow.

d(ζ + f )

dt
= 0.

This equation looks deceptively simple. But it is nonlinear:

∂ζ

∂t
+ V · ∇(ζ + f ) = 0 .
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ENIAC Integrations, March, 1950
Five meteorologists started work in Aberdeen, MA, and
continued day and night for 33 days.

• Jule Charney

• Ragnar Fjørtoft

• John Freeman

• Joe Smagoinsky

• George Platzman

One operation, calculation of the Jacobian, involved the
reading of three punch-cards followed by a pause. As this
sequence was repeated and repeated, Platzman wrote that
the meteorologists could “dance a jig” to the rhythm.
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Solution method for BPVE
∂ζ

∂t
= J(ψ, ζ + f )

1. Compute Jacobian

2. Step forward (Leapfrog scheme)

3. Solve Poisson equation for ψ (Fourier expansion)

4. Go to (1).

• Timestep : ∆t = 1 hour (2 and 3 hours also tried)

• Gridstep : ∆x = 750 km (approximately)

• Gridsize : 18 x 15 = 270 points

• Elapsed time for 24 hour forecast: About 24 hours.

Forecast involved punching about 25,000 cards. Most of the
elapsed time was spent handling these.
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ENIAC Algorithm
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ENIAC: First Computer Forecast
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Richardson’s reaction

“Allow me to congratulate you and your collaborators on
the remarkable progress which has been made in Princeton.

“This, although not a great success of a popular sort, is
anyway an enormous scientific advance on the single, and
quite wrong, result in which Richardson (1922) ended.”

58



NWP Operations
The Joint Numerical Weather Prediction (JNWP) Unit was
established on July 1, 1954:

• Air Weather Service of US Air Force

• The US Weather Bureau

• The Naval Weather Service.

Operational numerical forecasting began on 15 May, 1955,
using a three-level quasi-geostrophic model.
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Computer Forecasting Today
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Objective Analysis of Pressure

Analysis of 1000hPa height and 24hr precipitation.
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Prediction of Surface Conditions

Forecast of 1000hPa height and 24hr precipitation.
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Prediction of Surface Conditions

Forecast of 1000hPa height and 24hr precipitation.

This is an 81
2-day forecast!
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Objective Measure of Skill

Skill of 500 mb geopotential height. Forecast day when
Anomaly Correlation falls to 0.6

This is a measure of the useful forecast range.
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Objective Measure of Skill

Comparative skill of 500 mb forecasts.

64



Objective Measure of Skill

Comparative skill of 500 mb forecasts.
The six-day forecasts now are as good as the two-day

forecasts were in 1972.
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Conclusions

• Computer forecasts have improved dramatically since the
ENIAC integrations of 1950.
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Conclusions

• Computer forecasts have improved dramatically since the
ENIAC integrations of 1950.

• NWP is an indispensible source of guidance for forecast-
ers in preparing subjective forecasts
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Conclusions

• Computer forecasts have improved dramatically since the
ENIAC integrations of 1950.

• NWP is an indispensible source of guidance for forecast-
ers in preparing subjective forecasts

• Prospects are excellent for further increases in accuracy
and scope of NWP

65



Conclusions

• Computer forecasts have improved dramatically since the
ENIAC integrations of 1950.

• NWP is an indispensible source of guidance for forecast-
ers in preparing subjective forecasts

• Prospects are excellent for further increases in accuracy
and scope of NWP

• The mathematical equations developed by
G G Stokes

of Skreen are crucial in modelling and predicting atmo-
spheric flow, and are thus

the key to modern weather forecasting.
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The End

Typesetting Software: TEX, Textures, LATEX, hyperref, texpower, Adobe Acrobat 4.05
Graphics Software: Adobe Illustrator 9.0.2
LATEX Slide Macro Packages: Wendy McKay, Ross Moore


