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A Bowling-ball from Stillorgan
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The Physical System

Intro

Consider a spherical rigid body with an asymmetric
mass distribution.

Specifically, we consider a loaded sphere.

The dynamics are essentially the same as for the
tippe-top, which has been studied extensively.
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The Physical System

Intro

Consider a spherical rigid body with an asymmetric
mass distribution.

Specifically, we consider a loaded sphere.

The dynamics are essentially the same as for the
tippe-top, which has been studied extensively.

Unit radius and unit mass.
Centre of mass off-set a distance a from the centre.

Moments of inertia |4, I, and I3, with |1 = |, < 5.
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The Hierarchy of Models

Chaplygin's Top

Rock'n'roller
ocC || &

Chaplygin's Routh's Sphere
Sphere ocC || %
0C=0 =1,




Recap on 2008 Talk

The Routh Sphere does not recess.

Recession needs a perturbation, or friction.
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Recap on 2008 Talk

Intro

The Routh Sphere does not recess.
Recession needs a perturbation, or friction.
It was thought likely that appropriate friction forces

could explain recession.

» Rolling friction
» Sliding friction
» Spinning friction
» Air resistance

Perhaps I can tell you by Philippe’s 65!
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Symmetric Case: Routh Sphere (l1 = I»)

Xvarsus Y




Asymmetric Case: Rock’n’roller (I,
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The Routh Sphere: |; =1,

Cover of Routh’s
Dynamics
Part Il

In the Cambridge
Mathematical Tripos Examination
of 1854,

James Clark Maxwell
came second.

Edward John Routh
came first (senior wrangler).




The Routh Sphere: |1 =1,

In an inertial frame

av dL
ot F gt~ @

Euler angles (6, ¢, 1) related to angular velocity
e é ) W2 = 5;9£ ) w3 = (:QB + @b'

where s =sinf and ¢ = cos ¥
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The Routh Sphere: |1 =1,

In an inertial frame

av dL
ot F gt~ @

Euler angles (6, ¢, 1) related to angular velocity
w1:9, wzzsé, w3:ng'5+1/'1.
where s = sinf and ¢ = cos ¢
Rotating frame of reference: angular velocity is
w = wil + woj + w3k
Rotating frame of reference: angular momentum is

L: I1w1i+|1ng+|3w3k. E

Equations



In the rotating (body) frame, the equations become
av

'E;E' + §2><\’ = F:
and "
-E;E- + §2 X L. = (3

Vi + Qv — Qv = Fy
Vg + vy —Qvs = Fo
V3 + Qvo — vy = F3

haot + 13Qws — 11w, = Gy
|1d)2 ol |1 Q3W1 — |3Q1W3 = GQ
laws = Gs

Equations
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The Lagrangian
The Lagrangian of the system is easily written down:

L = 1(hw? + w3 + lw?) + 3(X? + Y2+ 22) — ga(1 — cos §)

Equations
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The Lagrangian
The Lagrangian of the system is easily written down:

L = 1(hw? + w3 + lw?) + 3(X? + Y2+ 22) — ga(1 — cos §)

The equations may then be written (in vector form):
S0=w, Kw=P,
where the matrices X and K are known and
—(g + w2 +wd)asy + (la — ls — af)wows
P, = ( (g +w? +ws)aso + (I3 — Iy + af)wiws )

(|1 — |2)W1 wo + aS(—Xu}1 I Uwg)u)g,
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The Lagrangian
The Lagrangian of the system is easily written down:

L = 1(hw? + w3 + lw?) + 3(X? + Y2+ 22) — ga(1 — cos §)

The equations may then be written (in vector form):
Y0 =w, Ko =P,

where the matrices X and K are known and

—(g + w2 +wd)asy + (la — ls — af)wows
P, = (g -+ w12 -+ w%)&Sa -+ (|3 — L+ af)w1w3

(|1 — |2)W1 wo + aS(—Xu}1 I Uwg)u)g,

uuuuuu

Note that neither K nor P, depends explicitly on ¢.

Equations



Nonholonomic Constraints

We assume perfectly rough contact (rolling motion).

Holonomic constraints f(q,) = 0 can be handled by
modifying the Lagrangian:

L—>L+Z)\kfk

For non-holonomic constraints this doesn’t work.
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Nonholonomic Constraints

We assume perfectly rough contact (rolling motion).

Holonomic constraints f(q,) = 0 can be handled by
modifying the Lagrangian:

L— L+ Z M i
For non-holonomic constraints this doesn’t work.

Misunderstandings on non-holonomy abound:
» Whittaker and Landau & Lifshitz get it right!
» Goldstein et al. (2002) get it wrong!
» See Flannery (2005) for a review.
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The enigma of nonholonomic constraints

wver nonhol mic
ed. The

Am. J. Phys., Vol 73, 265-272 (2005)



Nonholonomic Constraints

Assume nonholonomic constraints

gk(q,m qp) =0

When the constraints are linear in the velocities, we
can write the equations as:

aoL oL Z 09k
at 0g; aq, Mg~

For the Rock’n’roller, we have one holonomic
constraint and two nonholonomic constraints.

Constraints
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Constants of Motion for Routh Sphere

There are three degrees of freedom and three
constants of integration.

Constants
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Constants of Motion for Routh Sphere

There are three degrees of freedom and three
constants of integration.
The kinetic energy is

K = 3[LP + V2 + WP+ 3 [hef + howh + law]
The potential energy is
V = mga(1 — cos¥b).
Since there is no dissipation,

E = K+ V = constant .

uuuuuu
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Constants of Motion for Routh Sphere
Jellett’s constant is the scalar product:
C,=L-r=11s(ows + xw2) + I3f wz = constant .

where f = cosf — a, o0 = siny and xy = cos .
S O’Brien & J L Synge first gave this interpretation.

uuuuuu
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Constants of Motion for Routh Sphere
Jellett’s constant is the scalar product:
C,=L-r=11s(ows + xw2) + I3f wz = constant .

where f = cosf — a, o0 = siny and xy = cos .
S O’Brien & J L Synge first gave this interpretation.

Routh’s constant (difficult to interpret physically):

Cr = {\/I;; + 82 + (I3/14)f2 | w3 = constant .

uuuuuu
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Constants of Motion for Routh Sphere
Jellett’s constant is the scalar product:
C,=L-r=11s(ows + xw2) + I3f wz = constant .

where f = cosf — a, o0 = siny and xy = cos .
S O’Brien & J L Synge first gave this interpretation.

Routh’s constant (difficult to interpret physically):

Cr = {\/I;; + 82 + (I3/14)f2 | w3 = constant .

Constant Cr implies conservation of sign of w5 ... —
... but this does not automatically preclude recession! Us?
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Edward J Routh John H Jellett

1831-1907 1817-1888



Integrability of Routh Sphere

Using Routh’s constant, we have w; = w;3(6).

Then, using Jellett’s constant, we have w, = w,(6).

Using the energy equation, we can now write:

0% = £(9).

uuuuuu
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Integrability of Routh Sphere

Using Routh’s constant, we have w; = w;3(6).

Then, using Jellett’s constant, we have w, = w,(6).

Using the energy equation, we can now write:

0% = £(9).

For a given 6, both w, and w; are fixed:
This confirms that recession is impossible.

uuuuuu

Constants



Integrability of the Rock’n’roller

The only known constant of motion is total energy E.

There remains a symmetry: the system is unchanged
under the transformation

¢ — ¢+0¢
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Integrability of the Rock’n’roller

The only known constant of motion is total energy E.

There remains a symmetry: the system is unchanged
under the transformation

¢ — ¢+09

The spirit of Noether’s Theorem would indicate
another constant associated with this symmetry;

So far, we have not found a “missing constant”.

uuuuuu
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Rock’n’roller
The Jellett and Routh quantities

Q=L -r=1Ls(ows + xws) + I3f w3

G = [\/l3 + 82+ (Is/1)f2| ws

are no longer conserved for the Rock’n’roller.

uuuuuu
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Rock’n’roller
The Jellett and Routh quantities

Q=L -r=1Ls(ows + xws) + I3f w3

G = [\/l3 + 82+ (Is/1)f2| ws
are no longer conserved for the Rock’n’roller.

We have found, analytically, that recession occurs
when critical values of these quantities are crossed:

QJ = jfg and QJ = ffl,tr

These are shown on the figure below. E

Rock’n’roller
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Abstract We study the dynamics of a spherical rigid body that rocks and rolls on a plane under the effect of gra
dlstrlbutlon of mass is non- unlform and the centre of mass does not coincide W|th the geometric centre




Quaternionic Formulation

The Euler angles have a singularity when 6 = 0
The angles ¢ and ) are not uniquely defined there.

Quaternions
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Quaternionic Formulation

The Euler angles have a singularity when 6 = 0
The angles ¢ and ) are not uniquely defined there.

We can obviate this problem by using Euler’s
symmetric parameters

v = cos 30¢cos 1 (¢ + ¢) ¢ = sin30cos 3(¢ — )
¢ = cos 30sin 1(¢ + ) n=sin0sin (¢ — )

uuuuuu
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Quaternionic Formulation

The Euler angles have a singularity when 6 = 0
The angles ¢ and ) are not uniquely defined there.

We can obviate this problem by using Euler’s
symmetric parameters

v = cos 30¢cos 1 (¢ + ¢) ¢ = sin 30¢os 3(¢ — v)
C:COS%QSin%(Qﬁ-i-l/J) n = sin %Qsin %(gzﬁ—w)
There are the components of a unit quaternion
q="+i+nj+ck

e+ =1 ites

Quaternions
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Expressions for the angular rates of change:

(&€ +mm) — (v9 + Q)
VE+ )2+ ?)

(=6 & —né
- (559)- (529

5 = (2= _ (&i=mnt

,72_|_<‘2 52_|_772

The components of angular velocity are

wi = 20— &7+ ¢ —nd
we = 2l =i+ — (4]
ws = 2[v¢— ¢y +né— &l

0‘ pum—

Quaternions
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The first-order (small ¢) equations may be written

2
() - o
- 2
(3 - o
§+ rawaii + Q36+ €¢{(1 = rwa(v€ +¢n) + B (1m = )} =0

i) — kptwaé + Qon — 6/7{(1—H)ws(’YerCﬁ)JFQ%(’W—Cf)} 0

where ¢’ is related to the asymmetry (I, — 11)/l4.
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Quaternions



The first-order (small ¢) equations may be written

(2 - o
ﬂ 2

é+(2) ¢ =09
§+ rawaii + Q36+ €¢{(1 = rwa(v€ +¢n) + B (1m = )} =0

i) — kptwaé + Qon — 6/7{(1—H)ws(’YerCﬁ)JFQ%(’YU—Cf)} 0

where ¢ is related to the asymmetry (I, — 11)/l;.

By a simple rotation of coordinates, they can be
transformed to a system with constant coefficients.

Thus, the complete solution can be obtained.

uuuuuu
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Conclusion

Recession is found in a wide variety of physical
contexts.

Through the quaternion analysis, we can explain the
phenomenon in simple terms.

Details remain to be worked out.
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Conclusion

Recession is found in a wide variety of physical
contexts.

Through the quaternion analysis, we can explain the
phenomenon in simple terms.

Details remain to be worked out.

Come back for Part lll in a few years.

Thank You
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Conclusion
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