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A Bowling-ball from Stillorgan

Thanks to Brian O’Connor (School of Physics) for slicing the top off
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Recession I



The Physical System

Consider a spherical rigid body with an asymmetric
mass distribution.

Specifically, we consider a loaded sphere.

The dynamics are essentially the same as for the
tippe-top, which has been studied extensively.

Unit radius and unit mass.

Centre of mass off-set a distance a from the centre.

Moments of inertia I1, I2 and I3, with I1 ≈ I2 < I3.
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The Hierarchy of Models



Recap on 2008 Talk
The Routh Sphere does not recess.

Recession needs a perturbation, or friction.

It was thought likely that appropriate friction forces
could explain recession.

I Rolling friction
I Sliding friction
I Spinning friction
I Air resistance

Perhaps I can tell you by Philippe’s 65 th!
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Symmetric Case: Routh Sphere (I1 = I2)



Asymmetric Case: Rock’n’roller (I1 < I2)



The Routh Sphere: I1 = I2



The Routh Sphere: I1 = I2
In an inertial frame

dv
dt

= F
dL
dt

= G

Euler angles (θ, φ, ψ) related to angular velocity

ω1 = θ̇ , ω2 = sφ̇ , ω3 = cφ̇ + ψ̇ .

where s = sin θ and c = cos θ

Rotating frame of reference: angular velocity is

ω = ω1i + ω2j + ω3k

Rotating frame of reference: angular momentum is

L = I1ω1i + I1ω2j + I3ω3k .
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In the rotating (body) frame, the equations become

dv
dt

+ Ω×v = F

and
dL
dt

+ Ω×L = G

v̇1 + Ω2v3 − Ω3v2 = F1

v̇2 + Ω3v1 − Ω1v3 = F2

v̇3 + Ω1v2 − Ω2v1 = F3

I1ω̇1 + I3Ω2ω3 − I1Ω3ω2 = G1

I1ω̇2 + I1Ω3ω1 − I3Ω1ω3 = G2

I3ω̇3 = G3
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The Lagrangian
The Lagrangian of the system is easily written down:

L = 1
2(I1ω2

1 + I2ω2
2 + I3ω2

3) + 1
2(Ẋ 2 + Ẏ 2 + Ż 2)−ga(1− cos θ)

The equations may then be written (in vector form):

Σθ̇ = ω , Kω̇ = Pω

where the matrices Σ and K are known and

Pω =

 −(g + ω2
1 + ω2

2)asχ + (I2 − I3 − af )ω2ω3

(g + ω2
1 + ω2

2)asσ + (I3 − I1 + af )ω1ω3

(I1 − I2)ω1ω2 + as(−χω1 + σω2)ω3


Note that neither K nor Pω depends explicitly on φ.
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Nonholonomic Constraints

We assume perfectly rough contact (rolling motion).

Holonomic constraints fk (qρ) = 0 can be handled by
modifying the Lagrangian:

L −→ L +
∑

λk fk

For non-holonomic constraints this doesn’t work.

Misunderstandings on non-holonomy abound:
I Whittaker and Landau & Lifshitz get it right!
I Goldstein et al. (2002) get it wrong!
I See Flannery (2005) for a review.
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Nonholonomic Constraints

Assume nonholonomic constraints

gk (qρ, q̇ρ) = 0 .

When the constraints are linear in the velocities, we
can write the equations as:

d
dt
∂L
∂q̇i
− ∂L
∂qi

+
∑

k

µk
∂gk

∂q̇i
= 0 .

For the Rock’n’roller, we have one holonomic
constraint and two nonholonomic constraints.
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Constants of Motion for Routh Sphere
There are three degrees of freedom and three
constants of integration.

The kinetic energy is

K = 1
2 [u2 + v2 + w2] + 1

2 [I1ω2
1 + I2ω2

2 + I3ω2
3]

The potential energy is

V = mga(1− cos θ) .

Since there is no dissipation,

E = K + V = constant .
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Constants of Motion for Routh Sphere
Jellett’s constant is the scalar product:

CJ = L · r = I1s(σω1 + χω2) + I3f ω3 = constant .

where f = cos θ − a, σ = sinψ and χ = cosψ.
S O’Brien & J L Synge first gave this interpretation.

Routh’s constant (difficult to interpret physically):

CR =

[√
I3 + s2 + (I3/I1)f 2

]
ω3 = constant .

Constant CR implies conservation of sign of ω3 . . .
. . . but this does not automatically preclude recession!
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Edward J Routh John H Jellett

1831–1907 1817–1888



Integrability of Routh Sphere

Using Routh’s constant, we have ω3 = ω3(θ).

Then, using Jellett’s constant, we have ω2 = ω2(θ).

Using the energy equation, we can now write:

θ̇2 = f (θ) .

For a given θ, both ω2 and ω3 are fixed:
This confirms that recession is impossible.
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Integrability of the Rock’n’roller

The only known constant of motion is total energy E .

There remains a symmetry: the system is unchanged
under the transformation

φ −→ φ + δφ

The spirit of Noether’s Theorem would indicate
another constant associated with this symmetry;

So far, we have not found a “missing constant”.
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Rock’n’roller
The Jellett and Routh quantities

QJ = L · r = I1s(σω1 + χω2) + I3f ω3

QR =

[√
I3 + s2 + (I3/I1)f 2

]
ω3

are no longer conserved for the Rock’n’roller.

We have found, analytically, that recession occurs
when critical values of these quantities are crossed:

QJ = Qcrit
J,0 and QJ = Qcrit

J,π

These are shown on the figure below.
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QJ versus QR







Orbit of stars in a Globular Cluster





Quaternionic Formulation
The Euler angles have a singularity when θ = 0
The angles φ and ψ are not uniquely defined there.

We can obviate this problem by using Euler’s
symmetric parameters

γ = cos 1
2θ cos 1

2(φ + ψ) ξ = sin 1
2θ cos 1

2(φ− ψ)

ζ = cos 1
2θ sin 1

2(φ + ψ) η = sin 1
2θ sin 1

2(φ− ψ)

There are the components of a unit quaternion

q = γ + ξi + ηj + ζk

γ2 + ξ2 + η2 + ζ2 = 1
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Expressions for the angular rates of change:

θ̇ =
(ξξ̇ + ηη̇)− (γγ̇ + ζζ̇)√

(ξ2 + η2)(γ2 + ζ2)

φ̇ =

(
γζ̇ − ζγ̇
γ2 + ζ2

)
+

(
ξη̇ − ηξ̇
ξ2 + η2

)

φ̇ =

(
γζ̇ − ζγ̇
γ2 + ζ2

)
−

(
ξη̇ − ηξ̇
ξ2 + η2

)

The components of angular velocity are

ω1 = 2[γξ̇ − ξγ̇ + ζη̇ − ηζ̇]

ω2 = 2[γη̇ − ηγ̇ + ξζ̇ − ζξ̇]

ω3 = 2[γζ̇ − ζγ̇ + ηξ̇ − ξη̇]
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The first-order (small θ) equations may be written

γ̈ +
(ω3

2

)2
γ = 0

ζ̈ +
(ω3

2

)2
ζ = 0

ξ̈ + κ21ω3η̇ + Ω2
1ξ + ε′ζ

{
(1− κ)ω3(γξ̇ + ζη̇) + Ω2

11(γη − ζξ)
}

= 0

η̈ − κ21ω3ξ̇ + Ω2
1η − ε′γ

{
(1− κ)ω3(γξ̇ + ζη̇) + Ω2

11(γη − ζξ)
}

= 0

where ε′ is related to the asymmetry (I2 − I1)/I1.

By a simple rotation of coordinates, they can be
transformed to a system with constant coefficients.

Thus, the complete solution can be obtained.
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Conclusion

Recession is found in a wide variety of physical
contexts.

Through the quaternion analysis, we can explain the
phenomenon in simple terms.

Details remain to be worked out.

Come back for Part III in a few years.

Thank You
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