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Selection of earlier publications

I Rossby et al. (1939); Haurwitz (1940)
I Charney et al. (1950): ENIAC integrations
I Fjørtoft (1953): energy/enstrophy cascade
I Lorenz (1960): “Maximum simplification”
I Platzman (1962): Spectral analysis
I Baines (1976): Resonant RH triads
I Reznik et al. (1993): More triads
I Newell et al. (2001), Chen et al (2005).
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Barotropic Vorticity Equation (BVE)

I Shallow, incompressible fluid on rotating sphere
I Horizontal velocity non-divergent
I Radius a, rotation rate Ω

I Longitude/latitude coordinates (λ, φ)

Dynamics governed by conservation of absolute
vorticity

d
dt

(ζ + f ) = 0 .
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f = 2Ω sinφ ζ = k · ∇ × V

f =

[
planetary
vorticity

]
ζ =

[
relative
vorticity

]
f +ζ =

[
absolute
vorticity

]

Conservation of absolute vorticity:

d
dt

(ζ + f ) = 0

where
d
dt

=
∂

∂t
+

u
a cosφ

∂

∂λ
+

v
a
∂

∂φ
.
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Introducing a stream-function, we get:

V = k×∇ψ ζ = ∇2ψ

and the vorticity equation becomes:

∂∇2ψ

∂t
+

2Ω

a2

∂ψ

∂λ
+

1
a2

∂(ψ,∇2ψ)

∂(λ, µ)
= 0

where µ = sinφ.

This is the non-divergent barotropic vorticity equation

The Jacobian term represents non-linear advection.
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Omitting the nonlinear term, the BVE has solutions

ψ = ψ0Y m
n (λ, µ) exp(−iσt) = ψ0Pm

n (µ) exp[i(mλ− σt)]

The frequency σ is given by the dispersion formula

σ = σm
n ≡ −

2Ωm
n(n + 1)

.

Here, m is the zonal wavenumber, n is the total
wavenumber (both are integers).

The functions Y m
n (λ, µ) are eigenfunctions of the

Laplacian operator on the sphere:

∇2Y m
n = −n(n + 1)

a2 Y m
n .

These solutions are called Rossby-Haurwitz waves.
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It is remarkable that, for a single RH wave, the
nonlinear Jacobian term vanishes identically so that
such a wave is a solution of the nonlinear equation.

This is not generally true for a combination of such
waves: the velocity of one component will advect the
vorticity of another so that the waves interact and
their amplitudes change.

Intro BVE ENIAC PHONIAC RRHT Forcing FDSS Conclusion



It is remarkable that, for a single RH wave, the
nonlinear Jacobian term vanishes identically so that
such a wave is a solution of the nonlinear equation.

This is not generally true for a combination of such
waves: the velocity of one component will advect the
vorticity of another so that the waves interact and
their amplitudes change.

Intro BVE ENIAC PHONIAC RRHT Forcing FDSS Conclusion



The spherical harmonics form an orthonormal basis
on the sphere: Thus, the stream function has an
expansion

ψ(λ, µ, t) =
∞∑

n=0

n∑
m=−n

ψm
n (t)Y m

n (λ, µ) .

The vorticity has a similar expansion, with
coefficients ζm

n = (−n(n + 1)/a2)ψm
n .

Defining a vector wavenumber γ = (m,n) and its
conjugate by γ̄ = (−m,n). We can write

ψ =
∑
γ

ψγ(t)Yγ(λ, µ)e−iσγ t ζ =
∑
γ

ζγ(t)Yγ(λ, µ)e−iσγ t

with ψγ = −a2κγζγ, where κγ = 1/(n(n + 1)).

If the nonlinear interactions are weak, the coefficients
will vary slowly with time compared to exp(−iσγt).
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Flows governed by the BVE conserve total energy
and total enstrophy:

E =
1

4πa2

∫∫
1
2V · Vdλdµ = − 1

4πa2

∫∫
1
2ψζ dλdµ

S =
1

4πa2

∫∫
1
2ζ

2dλdµ = − 1
4πa2

∫∫
1
2∇ψ·∇ζ dλdµ

In terms of the spectral coefficients, these are:

E = 1
2

∑
γ κγ|ζγ|2 , S = 1

2

∑
γ |ζγ|2 .

The constancy of energy and enstrophy profoundly
influences the energetics of solutions of the
barotropic vorticity equation.
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We can write equations for the evolution of the
spectral coefficients:

dζγ
dt

= 1
2 i
∑
α,β

Iγβαζβζα exp(−iσt) ,

where σ = σα + σβ − σγ and the interaction coefficients
are given by

Iγβα = (κβ − κα)Kγβα .

The coupling integrals Kγβα vanish unless
mα + mβ = mγ, when they they are given by

Kγβα = 1
2

∫ +1

−1
Pγ

(
mβPβ

dPα

dµ
−mαPα

dPβ

dµ

)
dµ .
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Selection rules
For non-vanishing interaction, the following selection
rules must be satisfied:

mα + mβ = mγ

m2
α + m2

β 6= 0
nγnβnα 6= 0

nα 6= nβ
nα + nβ + nγ is odd

(nβ − |mβ|)2 + (nα − |mα|)2 6= 0
|nα − nβ| < nγ < nα + nβ

(mβ,nβ) 6= (−mγ,nγ) and (mα,nα) 6= (−mγ,nγ)

Symmetries: Iγαβ = Iγβα and Kγαβ = −Kγβα .
Redundancy rules: Kαβ̄γ = Kγβα and Kβγᾱ = Kγβα .
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Crucial Advances, 1920–1950

I Dynamic Meteorology
I Rossby Waves
I Quasi-geostrophic Theory
I Baroclinic Instability

I Numerical Analysis
I CFL Criterion

I Atmopsheric Observations
I Radiosonde

I Electronic Computing
I ENIAC
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The ENIAC
The ENIAC was the
first multi-purpose
programmable electronic
digital computer.

It had:

I 18,000 vacuum tubes
I 70,000 resistors
I 10,000 capacitors
I 6,000 switches
I Power: 140 kWatts
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Charney, et al., Tellus, 1950.
[

Absolute
Vorticity

]
=

[
Relative
Vorticity

]
+

[
Planetary
Vorticity

]
η = ζ + f .

I The atmosphere is treated as a single layer.
I The flow is assumed to be nondivergent.
I Absolute vorticity is conserved.

d(ζ + f)
dt

= 0.

This equation looks simple. But it is nonlinear:

∂

∂t
[∇2ψ] +

{
∂ψ

∂x
∂∇2ψ

∂y
− ∂ψ

∂y
∂∇2ψ

∂x

}
+ β

∂ψ

∂x
= 0 ,
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ENIAC Forecast for Jan 5, 1949
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NWP Operations

The Joint Numerical Weather Prediction Unit
was established on July 1, 1954:

I Air Weather Service of US Air Force
I The US Weather Bureau
I The Naval Weather Service.

Operational numerical weather forecasting began in
May, 1955, using a three-level quasi-geostrophic
model.
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Recreating the ENIAC Forecasts

The ENIAC integrations have been recreated using:

I A MATLAB program to solve the BVE
I Data from the NCEP/NCAR reanalysis

The matlab code is available on the author’s website
http://maths.ucd.ie/∼plynch/eniac
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Recreation of the Forecast
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Increase in Forecasting Skill
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Forecasts by PHONIAC

Peter Lynch & Owen Lynch

A modern hand-held mobile phone has far greater power
than the ENIAC had.

We therefore decided to repeat the ENIAC integrations
using a programmable mobile phone.

We converted the program ENIAC.M to PHONIAC.JAR, a J2ME
application, and implemented it on a mobile phone.

This technology has great potential for generation and
delivery of operational weather forecast products.
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PHONIAC: Portable Hand Operated
Numerical Integrator and Computer

[See Weather magazine for November]
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Resonant RH triads
We now investigate truncated solutions.

Under certain circumstances, the interactions are so
weak that the simple low-order structure persists.

We consider the case where there are just three
non-vanishing spectral components:

ψ = <
{
ψαYα exp(−iσαt) +

ψβYβ exp(−iσβt) + ψγYγ exp(−iσγt)
}
.

The selection rules then imply that the only
non-vanishing interaction coefficients are:

Iγβα = Iγαβ Iβᾱγ = Iβγᾱ Iαβ̄γ = Iαγβ̄ .
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Using the symmetries and redundancy rules, all the
coefficients can be expressed in terms of one, K :

i ζ̇α = −(κβ − κγ)K ζ∗βζγ exp(+iσt)

i ζ̇β = −(κγ − κα)K ζγζ∗α exp(+iσt)

i ζ̇γ = +(κα − κβ)K ζαζβ exp(−iσt)

where K = Kγβα and σ = σα + σβ − σγ.

In general, the right-hand sides of these equations
vary rapidly in time. If the equations are averaged
over a time τ = 2π/σ, the right hand sides vanish . . .

. . . unless σ = 0: this is the case of resonance.

We consider only the resonant case below.
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The condition for resonance, σ = 0, may be written

mακα + mβκβ = mγκγ .

We consider the generic case:

κα > κγ > κβ .

Thus, nα < nγ < nβ, so that the component ζγ is of a
scale intermediate between the others (Fjørtoft, ’53).
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The equations may now be written

i ζ̇α = kαζ∗βζγ
i ζ̇β = kβζγζ∗α
i ζ̇γ = kγζαζβ

where, assuming K > 0, the coefficients

kα = (κγ − κβ)K , kβ = (κα − κγ)K , kγ = (κα − κβ)K

are all positive and kα + kβ = kγ.
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The energy and enstrophy of the triad may be written:

E = 1
2(κα|ζα|2 + κβ|ζβ|2 + κγ|ζγ|2)

S = 1
2(|ζα|2 + |ζβ|2 + |ζγ|2) .

We now introduce the transformation

ηα =
√

kβkγ ζα , ηβ =
√

kγkα ζβ , ηγ =
√

kαkβ ζγ ,

The equations then assume the standard form:

i η̇α = η∗βηγ

i η̇β = ηγη
∗
α

i η̇γ = ηαηβ

These are the three-wave equations.
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Energy and enstrophy are conserved for the triad.

The Manley-Rowe quantities are defined as

N1 = |ηα|2 + |ηγ|2

N2 = |ηβ|2 + |ηγ|2

J = |ηα|2 − |ηβ|2 .

They are all constants of the motion.

The system may be shown to be the canonical
equations arising from the Hamiltonian H = <{ηαηβη∗γ}
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Numerical Example
We integrated the BVE with an IC dominated by mode
RH(4,5).

This is the mode that Hoskins (1973) suggested was
stable but that Thuburn & Li (2000) found to be
unstable.

The triad (4,5), (1,3) (3,7) comes close to satisfying
the frequency criterion for resonance.

The respective frequencies (normalized by 2Ω) are

σ4
5 = −0.13333 σ1

3 = −0.08333 σ3
7 = −0.05357

so that σ4
5 ≈ σ1

3 + σ3
7.

In the following figure, we show the evolution of the
component amplitudes over 80 days.
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Evolution of component amplitudes over 80 days.
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Forced Planetary Waves

We now include forcing by orography and damping
towards a reference state with potential vorticity f/H.

The BPVE may be written

d
dt

(
ζ + f

H − h0

)
= −ν

(
ζ + f

H − h0
− f

H

)
where H is the mean height, h0 the elevation of the
orography and ν is the damping coefficient.
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The flow is separated into a zonal super-rotation
ū = a cosφ ω̄ with constant ω̄, and a perturbation (u, v).

Assuming that the orography is small, h0 � H, we can
write the equation as(

∂

∂t
+ ω̄

∂

∂λ

)
ζ +

2Ω

a2

∂ψ

∂λ
+

1
a2

∂(ψ, ζ)

∂(λ, µ)
− ω̄f

H
∂h0

∂λ

= −ν
(
ζ − fh0

H

)

The linear normal modes have eigen-frequencies

σm
n = ω̄ − (2Ω + ω̄)m

n(n + 1)
.
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Bounded response to forcing

If ω̄ is such that σm
n vanishes for some (m,n), the

orographic forcing leads to a solution that grows
linearly with time until equilibrated by the damping.

In the absence of damping, it grows without limit.

However, as the amplitude increases, nonlinear
interactions transfer energy to other modes and it is
possible to have a bounded response to constant
orographic forcing.

This is the case we study below.
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We seek a solution in the form of a resonant triad

ψ = <
{
ψαYα exp(−iσαt)+ψβYβ exp(−iσβt)+ψγYγ exp(−iσγt)

}
with σα + σβ = σγ.

Assuming that the solution is of small amplitude ε, we
expand the streamfunction as

ψ = εψ1 + ε2ψ2 + ε3ψ3 + . . .

The nonlinear term involving J(ψ, fh0/H) does not
enter at O(ε2).

The damping coefficient ν is O(ε).
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We perform a multiple time-scale analysis.

We assume that the orography (actually, fh0) has the
same spatial structure Yγ(λ, φ) as the γ-term, and

ω̄ =
(2Ω + ω̄)mγ

nγ(nγ + 1)
or ω̄ =

2Ωmγκγ
1−mγκγ

.

Thus, the γ-term resonates with the orography.

At order ε, the equations are linear and unforced, so
the three components evolve independently.
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At order ε2, the forcing, damping and nonlinearity
enter, and the equations at this level are

ζ̇α = −(κβ − κγ)K ζ∗βζ
∗
γ − νζα

ζ̇β = −(κγ − κα)K ζ∗γζ
∗
α − νζβ

ζ̇γ = +(κα − κβ)K ζ∗αζ
∗
β − νζγ + F

where the coefficient F is a constant proportional to
the magnitude of the orographic forcing.

Introducing a transformation as before, we get the
forced-damped three-wave equations:

i η̇α = η∗βηγ − iνηα
i η̇β = ηγη

∗
α − iνηβ

i η̇γ = ηαηβ − iνηγ + iF
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The quantities J, N(= N1 + N2) and H are no longer
conserved quantities, but obey the equations

J̇ = −2νJ ,
Ṅ = −2νN + 2<{F ∗ηγ} ,
Ḣ = −3νN + 2<{F ∗ηαηβ} .

Note that the energy quantity N may increase or
decrease in response to the forcing F , depending on
the phase relationship between F and ηγ.
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Numerical Example

We integrated the BVE with orographic forcing of a
single spectral component, RH(3,9).

The mean flow ω̄ is set so that this mode is stationary.

Mode RH(3,9) forms a resonant triad with RH(1,6) and
RH(2,14).

Initially, all modes have very small amplitudes,
representing background noise.

In the figure below, we show the component
amplitudes for weak orographic forcing.
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Evolution of component amplitudes over 80 days.
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In the figure above, we showed the component
amplitudes for weak orographic forcing.

Despite the absence of damping, the response to a
constant forcing is bounded

Extended integrations confirm this behaviour.
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Free Rossby wave triads in the atmosphere can be
modelled by an elastic pendulum or swinging spring
(Lynch, 2003).

At a certain level of approximation, the equations of
the two systems are mathematically isomorphic.

Thus, behaviour such as the precession of
successive horizontal excursions of the spring
indicated similar behaviour in the atmosphere.

We extend this correspondence here to include
forcing and damping.
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Forced-damped swinging spring

We consider a swinging
spring whose point of sus-
pension oscillates verti-
cally with period ωZ .

`0 is unsteretched length
` length at equilibrium
k is spring constant
m = 1 is unit mass.
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The Lagrangian, approximated to cubic order, is

L = 1
2 [ẋ2 + ẏ2 + (ż2 + 2ż ζ̇ + ζ̇2)]

−1
2 [ω2

R(x2 + y2) + ω2
Z z2]− 1

2λ(x2 + y2)z .

where x , y and z are Cartesian coordinates centered
at the point of equilibrium.

ζ(t) = <{ζ0eiωZ t} is displacement of suspension point

ωR = (g/`)1/2 is frequency of pendular motion

ωZ = (k/m)1/2 is frequency of elastic oscillations

λ = `0ω
2
Z/`

2 is a parameter.
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Damping is introduced through a Rayleigh dissipation
function

F = 1
2ν(ẋ2 + ẏ2 + ż2) ,

Lagrange’s equations then become

d
dt

(
∂L
∂q̇

)
− ∂L
∂q

+
∂F
∂q̇

= 0 ,

where q = (x , y , z).

The motion of the suspension point introduces an
inhomogeneous term −ζ̈ into the z-equation.

We employ the average Lagrangian technique to
obtain an approximate solution.
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We confine attention to the resonant case ωZ = 2ωR.
The solution is assumed to be of the form

x = <{a(t) exp(iωRt)} ,
y = <{b(t) exp(iωRt)} ,
z = <{c(t) exp(iωZ t)} .

The time scale of variation of a, b and c is much
longer than τ = 2π/ωR.

If the Lagrangian and the dissipation function are
averaged over time τ , the amplitude equations are

i ȧ = −µa∗c − iνa
iḃ = −µb∗c − iνb
iċ = −1

4µ(a2 + b2)− iνc + 1
2ωZ ζ0 .

where µ = λ/4ωR.
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Defining new variables by

α = 1
2µ(a + ib) , β = 1

2µ(a− ib) , γ = µc

the equations for the envelope dynamics become

iα̇ = β∗γ − iνα
i β̇ = γα∗ − iνβ
i γ̇ = αβ − iνγ + iF ,

where F = −1
2 iµωZ ζ0 represents the external forcing.

This system is isomorphic to the system for a
forced-damped resonant Rossby triad.
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Numerical Example

We integrated the system over thirty time units, with
unit forcing F = 1 and no damping

The initial conditions are

α0 = (+0.0005,0.0000) ,

β0 = (−0.0005,0.0005) ,

γ0 = (+0.0000,0.0000) .

The amplitudes of the components (real and
imaginary parts) are shown in the figure below.
Initially, the forced component, γ, grows linearly.
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Amplitudes of α, β and γ. Components ={α}, <{β} and
<{γ} are shown bold. Other amplitudes remain small.
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As the forced mode γ gains energy, there is a sudden
surge of energy into the other two components, α and
β.

This is the pulsation phenomenon.

We see how a constant resonant forcing can result in
a bounded response even in the absence of damping.

Full account to appear in Tellus.
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Concluding remarks
I Resonant triads can explain the instability of

large-scale RH waves.
I A constant forcing can lead to a periodic

response, even in the absence of damping.
I There is a mathematical equivalence between

forced resonant RH triads and the forced-damped
swinging spring.

I Triad interactions are important in establishing
and maintaining the atmospheric enegy
spectrum.

I These interactions can account for quasi-periodic
variations of long time-scale.

I An examination of the spectral characteristics of
ERA40 (triads) data would be of great interest.
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response, even in the absence of damping.
I There is a mathematical equivalence between

forced resonant RH triads and the forced-damped
swinging spring.

I Triad interactions are important in establishing
and maintaining the atmospheric enegy
spectrum.

I These interactions can account for quasi-periodic
variations of long time-scale.

I An examination of the spectral characteristics of
ERA40 (triads) data would be of great interest.
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Thank You
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