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Magnums and Subsets of N

The aim of this work is to define a number

m(A)

for subsets A of N that corresponds to our
intuition about the size or magnitude of A.

We call m(A) the magnum of A.

Magnum = Magnitude Number
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Galileo Galilei (1564–1642)

Every number n can be
matched with its square n2.

In a sense, there are
as many squares
as whole numbers.

1 2 3 4 5 6 7 8 . . .
l l l l l l l l . . .
1 4 9 16 25 36 49 64 . . .
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Infinite Sets
We take the natural numbers and the even numbers

N := {1,2,3, ...}

2N := {2,4,6, ...}

By associating each number with its double,

n ∈ N←→ 2n ∈ 2N

we have a perfect 1-to-1 correspondence.

By Cantor’s argument, the two sets are the same size:

card[N] = card[2N] .
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Counterintuitive

But
card[N] = card[2N] .

is paradoxical: The set of natural numbers
properly contains all the even numbers

2N $ N .

But N also contains all the odd numbers:

N = 2N ] (2N− 1) .

In an intuitive sense, N is larger than 2N.
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Review of Background
Cardinality is a blunt instrument:

The natural numbers, rationals and algebraic
numbers all have the same cardinality.

So, ℵ0 fails to discriminate between them.

Our aim is to define a number m(A) for sets
A ⊂ N that corresponds to our intuition.

“It is by logic that we prove,
but by intuition that we discover.”

[Henri Poincaré]

We will define m(A) as a surreal number.
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John H. Conway’s ONAG [ 1976 / 2001 ]
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Donald Knuth’s Surreal Numbers [ 1974 ]
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Constructing the Surreals

The Surreal numbers No are constructed
inductively, using just two simple rules:

1. Every new number x is defined by a pair of sets
of old numbers, the left set and the right set:

x = { Lx | Rx }

2. No element of the left set Lx is greater than
or equal to any element of the right set Rx .

Then x is the simplest number between Lx and Rx .
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Constructing the Surreals

We start by defining the number zero as

0 = {∅ | ∅} = { | }

Then 1, 2, 3 and so on are defined as

{ 0 | } = 1 { 1 | } = 2 { 2 | } = 3 . . .

Negative numbers are defined inductively as

−x = {−R | − L } ,

so that, for example,

{ | 0 } = −1 { | − 1 } = −2 . . .
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Constructing the Surreals

Dyadic fractions (of the form m/2n) appear as

{ 0 | 1 } = 1
2 { 1 | 2 } = 3

2 { 0 | 1
2 } =

1
4 { 1

2 | 1 } =
3
4 . . .

Over an infinite number of stages,
all the dyadic fractions emerge.

At that stage, all other real numbers appear.

Infinite and infinitesimal numbers also appear.
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Surreal Numbers

Surreal network from 0 to the first infinite number ω.
[Image: Wikimedia Commons]
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The First Infinite Number

The first infinite number ω appears on Day ω:

ω = {0,1,2,3, . . . | }

On following days, we get

ω + 1 = {0,1,2, . . . ω | }
ω − 1 = {0,1,2, . . . | ω}

2ω = {0,1,2, . . . ω, ω + 1, . . . | }
1
2ω = {0,1,2, . . . | ω, ω − 1, . . . } ,

and many other more exotic numbers.
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Manipulating Infinite Numbers

The Class of Surreal Numbers is denoted No.

Conway defined arithmetic operations on No
such that surreal numbers behave beautifully:

The Class No is a totally ordered Field.

We can define quantities like

ω2 ωω
√
ω logω

and many even stranger numbers.
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The Omnific Integers Oz

Conway (ONAG, Ch. 5) defined the Class Oz of
omnific integers: x ∈ No is an omnific integer if

x = {x − 1|x + 1} .

So x is the simplest number between x − 1 and x + 1.

The omnifics greatly extend the real integers Z:

Z ⊂ Oz

Omnifics Oz are the appropriate integers for No.
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The Surnatural Numbers Nn
The positive omnific numbers are
called the surnatural numbers:

Nn := Oz+ .

The magnum m maps sets to the surnatural numbers:

m : P(N)→ Nn .

Since ω/2 ∈ Nn, ω is an even number.
Moreover, ω is a multiple of 3, of 4, of k .

Since k
√
ω ∈ Nn, ω is a perfect square,

a perfect cube, and a perfect k -th power.
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Two Approaches to Defining Magnums

We will develop two distinct approaches
to the definition of set magnums:

I The Incremental or Genetic Approach,
I Extension of the Counting Function.

The two approaches are compatible,
and yield identical values for m(A).
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The Magnum Form

We seek a general expression in the form

m(A) = {m(B) : B ⊂ A | m(C) : A ⊂ C} ,

where

I All the subsets B of A are on the left and
I All the supersets C of A are on the right.

This form guarantees The Euclidean Principle.

However, . . .
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Definition of m(A) Step-by-step

We will construct m(A) in incremental fashion.

We use the magnums of ‘old’ sets to
generate the magnums of ‘new’ sets!

For each ordinal number α, we define three families:

I Mα: Made sets magnumbered on or before Day α,
I Nα: New sets, magnumbered on Day α, and
I Oα: Old sets, magnumbered before Day α.
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Definition of m(A) Step-by-step

For each ordinal γ, on Day γ we define a premagnum:

mγ(A) = {m(B) : B ∈ Oγ,B ⊂ A | m(C) : C ∈ Oγ,A ⊂ C} .

The proper subsets B and supersets C range
over all sets magnumbered prior to Day γ.

When a stage γ = α is reached where mγ(A)
cannot undergo further changes, we define

m(A) := mα(A)

and call α the Birthday of m(A).
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Birthdays of the Magnums
When is the magnum of a subset of N first defined?
To answer, we consider the ordinals as they arise:

Day 0: The magnum of ∅ is defined to be 0.
Day 1: Magnums of all singletons {n} defined to be 1.
Day 2: Magnums of all doubletons {m,n} equal to 2.
Day n: All sets with n elements have magnum n.

Finite subsets of N are magnumbered on finite days.
Their magnums are all the finite ordinal numbers.

Day ω: The set N is given a magnum on this day:
m(N) = ω, the first infinite magnum.
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Calendar for Magnumbering Sets
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Defining m(A) using Density
The density of a set A ⊂P(N) is

ρA = lim
n→∞

κA(n)
n

We might attempt to define the magnum of A as

m(A) := ρA · ω .

There are serious limitations with this:

For example, for A = {n2 : n ∈ N} we have

ρA = 0 so m(A) = 0.

We must consider other ways to evaluate κA(ω).
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Difficulties with Limits
Conway states (ONAG, page 43) that we
cannot assume the limit of (1,2,3, . . . ) is ω.

Therefore, we cannot conclude that m(N) = ω.

Limits don’t work for the surreal numbers.

Nonstandard analysis depends on a Transfer Axiom.

In a nut-shell, this states that (first-order) properties
of real numbers also hold for hyper-real numbers.

There is no Transfer Axiom for the surreals.

Example:
√

2 is a rational number in No.
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Extending Functions from N to Nn

We define the counting function κA : N→ N thus:

κA(n) = Number of terms of A less than or equal to n.

Sometimes, the extension to Nn is obvious:

κ : n 7→ n2 , n ∈ N to κ̂ : ν 7→ ν2 , ν ∈ Nn .

so we have κ̂(ω) = ω2.

The Extension Axiom generalizes this idea.
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The Axiom of Extension:

A function f : N→ N is a recipe, rule or algorithm;
Given an input in N, f produces an output in N.

The Axiom of Extension states that it is
possible to extend the domain of f to Nn.

For functions with a “natural” extension to Nn
— for example, polynomials and logarithms —
the Extension Axiom is superfluous.

In view of that, we omit technicalities.
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The Axiom of Extension [OMIT]

For any functions f : N→ N0 and g : N→ N0, there exist
extensions f̂ : Nn→ Nn and ĝ : Nn→ Nn such that

f (n) →= g(n) =⇒ f̂ (ν) = ĝ(ν) for ν ∈ Nn \ N

f (n)
→
< g(n) =⇒ f̂ (ν) < ĝ(ν) for ν ∈ Nn \ N

and the extension preserves sums and products:

̂(f + g)(ν) := f̂ (ν) + ĝ(ν) and (̂f · g)(ν) := f̂ (ν) · ĝ(ν).
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Defining the Magnum of A

The defining function of the sequence A = (an)n is

αA(n) := an .

The counting function may be expressed as

κA(n) = bα−1
A (n)c .

If κA is extended to Nn, we can
define the magnum of A to be:

m(A) := κ̂A(ω)
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Some Theorems

We have proved several useful theorems:

I A ⊂ B =⇒ m(A) < m(B) (Euclidean Principle).
I m(A ] B) = m(A) + m(B) (Finite Additivity).
I A Density Theorem relates m(A) to ρA.
I {m(B) |m(C)} = κ̂A(ω) (Methods are Consistent).
I The General Isobary Theorem.
I m(U × V ) = m(U) ·m(V ).

I For Larger Sets:
I m(N) = ω =⇒ m(Z) = 2ω + 1.
I m(N× N) = ω2.
I With banded ordering of N2, m(Q) = O(ω4/3).
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Examples of Magnums

A = kN = {kn : n ∈ N} m(A) = ω/k

A = N(k) = {nk : n ∈ N} m(A) = k
√
ω

Arit. Seq. A = {kn + ` : n ∈ N} m(A) =
⌊
ω

k
− `

k

⌋
Geom. Seq. A = {r n : n ∈ N} m(A) = blogr ωc

Prime Numbers {pn : n ∈ N} m(A) ≈ bω/ logωc

Fibonacci Numbers bϕn/
√

5e m(A) ≈ blogϕ(
√

5ω)c

Intro Cantor SN Genetic Definition Density Extension Theorems Evaluation Finis



Outline
Introduction

Georg Cantor

Surreal Numbers

Genetic Definition

Density and Magnums

Extension Axiom

Some Theorems

Evaluation of Magnums

Conclusions

Intro Cantor SN Genetic Definition Density Extension Theorems Evaluation Finis



Conclusions

We have found magnums for a wide range of sets.

But there are many sets for which we
are unable to calculate the magnums.

I Does every subset of N have a magnum?

I Does every countable set have a magnum?

These questions remain to be answered.
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Opportunities

• Great projects for students.

• Many open problems and challenges.

• Analysis over surreals is far from complete.

• Surreals must eventually be of value in physics!

Slides of Talk

Magnums: Counting Sets with Surnatural Numbers
https://maths.ucd.ie/~plynch/Talks/

Google for “Peter Lynch UCD” and click on “Talks”
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