A Century of Numerical Weather Prediction: The View from Limerick

Peter Lynch

Peter.Lynch@ucd.ie

Meteorology & Climate Centre, University College Dublin

Seminar

Dept. of Mathematics & Statistics

University of Limerick
The Pre-history of Numerical Weather Prediction

(circa 1900)

Vilhelm Bjerknes, Max Margules and Lewis Fry Richardson
Vilhelm Bjerknes (1862–1951)

Vilhelm Bjerknes on the quay at Bergen, painted by Rolf Groven, 1983
Vilhelm Bjerknes (1862–1951)

- Born in March, 1862.
- Matriculated in 1880.
- Fritjof Nansen was a fellow-student.
 - Studied under Poincaré.
- Bonn, 1890–92.
 - Worked with Heinrich Hertz.
- 1898: Circulation theorems published
- 1904: Meteorological Manifesto
- Christiania (Oslo), 1907–1912.
- 1919: Frontal Cyclone Model.
To establish a science of meteorology, with the aim of predicting future states of the atmosphere from the present state.

“If it is true ... that atmospheric states develop according to physical law, then ... the conditions for the rational solution of forecasting problems are:
To establish a science of meteorology, with the aim of predicting future states of the atmosphere from the present state.

“If it is true ... that atmospheric states develop according to physical law, then ... the conditions for the rational solution of forecasting problems are:

1. An accurate knowledge of the state of the atmosphere at the initial time.
Bjerknes’ 1904 Manifesto

To establish a science of meteorology, with the aim of predicting future states of the atmosphere from the present state.

“If it is true . . . that atmospheric states develop according to physical law, then . . . the conditions for the rational solution of forecasting problems are:

1. An accurate knowledge of the state of the atmosphere at the initial time.

2. An accurate knowledge of the physical laws according to which one state . . . develops from another.”
To establish a science of meteorology, with the aim of predicting future states of the atmosphere from the present state.

“If it is true ... that atmospheric states develop according to physical law, then ... the conditions for the rational solution of forecasting problems are:

1. An accurate knowledge of the state of the atmosphere at the initial time.

2. An accurate knowledge of the physical laws according to which one state ... develops from another.”

Step (1) is Diagnostic.
Step (2) is Prognostic.
Bjerknes ruled out analytical solution of the mathematical equations, due to their nonlinearity and complexity:

“For the solution of the problem in this form, graphical or mixed graphical and numerical methods are appropriate, which methods must be derived either from the partial differential equations or from the dynamical-physical principles which are the basis of these equations.”
The First Reading from

The Book of Limerick
Bill Bjerknes defined, with conviction, The science of weather prediction:
Bill Bjerknes defined, with conviction,
The science of weather prediction:
By chart diagnosis,
And graphic prognosis,
Bill Bjerknes defined, with conviction, the science of weather prediction: by chart diagnosis, and graphic prognosis, the forecast is rendered non-fiction.
In 1904, Max Margules contributed a short paper for the Festschrift published to mark the sixtieth birthday of his former teacher, the renowned physicist Ludwig Boltzmann.

Margules considered the possibility of predicting pressure changes by means of the continuity equation.
In 1904, Max Margules contributed a short paper for the *Festschrift* published to mark the sixtieth birthday of his former teacher, the renowned physicist Ludwig Boltzmann.

Margules considered the possibility of predicting pressure changes by means of the continuity equation. He showed that, to obtain an accurate estimate of the pressure tendency, the winds would have to be known to a precision quite beyond the practical limit. He concluded that any attempt to forecast synoptic changes by this means was doomed to failure.
The *Impossibility* of Forecasting

In 1904, Max Margules contributed a short paper for the *Festschrift* published to mark the sixtieth birthday of his former teacher, the renowned physicist Ludwig Boltzmann.

Margules considered the possibility of predicting pressure changes by means of the continuity equation.

He showed that, to obtain an accurate estimate of the pressure tendency, the winds would have to be known to a precision quite beyond the practical limit.

He concluded that any attempt to forecast synoptic changes by this means was doomed to failure.

A translation of Margules’ 1904 paper, together with a short introduction, has been published as a Historical Note by Met Éireann.
The Vienna School

Many outstanding scientists were active in meteorological studies in Austria in the period 1890–1925, and great progress was made in dynamic and synoptic meteorology and in climatology during this time.

Julius Hann
Wilhelm Trabert
Wilhelm Schmidt
Albert Defant
Josef Pernter
Felix Exner
Heinrich Ficker
Max Margules
Max Margules (1856–1920)

Margules was born in the town of Brody, in western Ukraine, in 1856.

He studied mathematics and physics at Vienna University, and among his teachers was Ludwig Boltzmann.

In 1882 he joined the Meteorological Institute as an Assistant, and continued to work there for 24 years.
Margules studied the diurnal and semi-diurnal variations in atmospheric pressure due to solar radiative forcing.

He derived two species of solutions of the Laplace tidal equations, which he called *Wellen erster Art* and *Wellen zweiter Art*

This was the first identification of the distinct types of waves now known as *inertia-gravity waves* and *rotational waves.*
Margules studied the diurnal and semi-diurnal variations in atmospheric pressure due to solar radiative forcing.

He derived two species of solutions of the Laplace tidal equations, which he called Wellen erster Art and Wellen zweiter Art.

This was the first identification of the distinct types of waves now known as inertia-gravity waves and rotational waves.

Margules showed that the available potential energy associated with horizontal temperature contrasts within a midlatitude cyclone was sufficient to explain the observed winds.

This work suggested that there were sloping frontal surfaces associated with mid-latitude depressions, and foreshadowed the frontal theory which emerged about a decade later.
A Meteorological Tragedy

Margules was an introverted and lonely man, who never married and worked in isolation, not collaborating with other scientists.

He was disappointed and disillusioned at the lack of recognition of his work and retired from the Meteorological Institute in 1906, aged only fifty, on a modest pension.
A Meteorological Tragedy

Margules was an introverted and lonely man, who never married and worked in isolation, not collaborating with other scientists.

He was disappointed and disillusioned at the lack of recognition of his work and retired from the Meteorological Institute in 1906, aged only fifty, on a modest pension.

Its value was severely eroded during the First World War so that his 400 crowns per month was worth about one Euro, insufficient for more than the most meagre survival.

His colleagues tried their best to help him, making repeated offers of help which Margules resolutely resisted.
Margules was an introverted and lonely man, who never married and worked in isolation, not collaborating with other scientists.

He was disappointed and disillusioned at the lack of recognition of his work and retired from the Meteorological Institute in 1906, aged only fifty, on a modest pension.

Its value was severely eroded during the First World War so that his 400 crowns per month was worth about one Euro, insufficient for more than the most meagre survival.

His colleagues tried their best to help him, making repeated offers of help which Margules resolutely resisted.

He died of starvation in 1920.
The physical principle of mass conservation is expressed mathematically in terms of the continuity equation

$$\frac{\partial \rho}{\partial t} + \nabla \cdot \rho \mathbf{V} = 0$$
The physical principle of mass conservation is expressed mathematically in terms of the continuity equation

\[
\frac{\partial \rho}{\partial t} + \nabla \cdot \rho \mathbf{V} = 0
\]

* * * *

Under hydrostatic balance the pressure at a point is determined by the weight of air above it.
A Layer of Incompressible Fluid

The physical principle of mass conservation is expressed mathematically in terms of the continuity equation

\[\frac{\partial \rho}{\partial t} + \nabla \cdot \rho \mathbf{V} = 0 \]

Under hydrostatic balance the pressure at a point is determined by the weight of air above it.

We can replace the atmosphere by an incompressible fluid layer of finite depth. We take the density to be numerically equal to one (i.e., \(\rho = 1 \text{ kg m}^{-3} \), comparable to air).

Then, if the depth is ten kilometres (or \(h = 10^4 \text{ m} \)), the pressure is \(p = \rho gh = 1 \times 10 \times 10^4 = 10^5 \text{ Pa} = 1 \text{ atm} \).

In other words, this ten-kilometre layer of incompressible fluid of unit density gives rise to a surface pressure similar to that of the compressible atmosphere.
We consider a square geographical region of side 10 km:

The area of the region is 10^8 square metres.
The column of fluid above this square forms a cube whose volume is the area multiplied by the depth:

\[V = 10^8 \times 10^4 = 10^{12} \text{ m}^3 \]

The total mass of fluid contained in the cube (in kg) has the same *numerical* value as the volume:

\[M = 10^{12} \text{ kg} = 1000 \text{ megatonnes} \]
Convergence and Divergence

How does the pressure at a point change?
Convergence and Divergence

How does the pressure at a point change?

Since pressure is due to the weight of fluid above the point in question, the only way it can change is through fluxes of air into or out of the column above the point.

Nett inward and outward fluxes are respectively called convergence and divergence.
How does the pressure at a point change?

Since pressure is due to the weight of fluid above the point in question, \textit{the only way it can change is through fluxes} of air into or out of the column above the point.

Nett inward and outward fluxes are respectively called \textit{convergence} and \textit{divergence}.

A difficulty arises because the \textit{nett} convergence or divergence is a \textit{small difference between two large numbers}.

\begin{center} ⋆ ⋆ ⋆ ⋆ \end{center}
How does the pressure at a point change?

Since pressure is due to the weight of fluid above the point in question, *the only way it can change is through fluxes* of air into or out of the column above the point.

Nett inward and outward fluxes are respectively called *convergence* and *divergence*.

A difficulty arises because the *nett* convergence or divergence is *a small difference between two large numbers*.

Suppose that the movement of air is from west to east, so that no air flows through the north or south faces of our cubic column.

Assume for now that the wind speed has a *uniform value of ten metres per second*.
(c) \textbf{Influx = Outflow}

\[u = 10 \text{ m/s} \quad \text{and} \quad u = 10 \text{ m/s} \]

\[\Delta x = 10 \text{ km} \]
Thus, in a single second, a slab of air of lateral extend 10 km, of height 10 km and of thickness ten metres, moves into the cube through its western face.
The slab of air moving into the cube has volume

\[V_{\text{in}} = 10^9 \text{m}^3 \]

Its mass has the same \textit{numerical} value (since \(\rho = 1 \)):

\[M_{\text{in}} = 10^9 \text{kg} \]

So the mass of the cube would increase by \(10^9\) kg, or \textit{one megatonne per second} if there were only inward flux.
The slab of air moving into the cube has volume
\[V_{\text{in}} = 10^9 \text{ m}^3 \]
Its mass has the same *numerical* value (since \(\rho = 1 \)):
\[M_{\text{in}} = 10^9 \text{ kg} \]
So the mass of the cube would increase by \(10^9 \text{ kg} \), or *one megatonne per second* if there were only inward flux.

However, there is a corresponding flux of air outward through the eastern face of the cube, with precisely the same value.

So, the *nett* flux is zero:
\[(\text{Flux})_{\text{in}} = (\text{Flux})_{\text{out}} \]

The total mass of air in the cube is unchanged, and the surface pressure remains constant.
Now suppose that the flow speed inward through the western face of the cube is *slightly greater*, let us say 1% greater:

\[u_{in} = 10.1 \text{ m s}^{-1}, \quad u_{out} = 10.0 \text{ m s}^{-1} \]
Now suppose that the flow speed inward through the western face of the cube is slightly greater, let us say 1% greater:

\[u_{\text{in}} = 10.1 \text{ m s}^{-1}, \quad u_{\text{out}} = 10.0 \text{ m s}^{-1} \]

There is thus more fluid flowing into the cube than out. There is a *nett convergence* of mass into the cube.
Now suppose that the flow speed inward through the western face of the cube is slightly greater, let us say 1% greater:

\[u_{\text{in}} = 10.1 \text{ m s}^{-1}, \quad u_{\text{out}} = 10.0 \text{ m s}^{-1} \]

There is thus more fluid flowing into the cube than out. There is a nett convergence of mass into the cube.

We may expect a pressure rise. Let us now calculate it.
The additional inward flux of mass is 1% of the total inward flux:

\[\Delta(\text{Flux})_{\text{in}} = 0.01 \times 10^9 = 10^7 \text{ kg s}^{-1} \]

Initially, the total mass of the cube was \(M = 10^{12} \) kg, so the fractional increase in mass in one second is

\[\frac{\Delta M}{M} = \frac{10^7}{10^{12}} = 10^{-5} \]
The additional inward flux of mass is 1% of the total inward flux:

\[\Delta(\text{Flux})_{\text{in}} = 0.01 \times 10^9 = 10^7 \text{ kg s}^{-1} \]

Initially, the total mass of the cube was \(M = 10^{12} \text{ kg} \), so the fractional increase in mass in one second is

\[\frac{\Delta M}{M} = \frac{10^7}{10^{12}} = 10^{-5} \]

Pressure is proportional to mass. Therefore, the fractional increase in pressure is precisely the same.

To get the rate of increase in pressure, we multiply the total pressure by this ratio:

\[\frac{dp}{dt} = \frac{\Delta M}{M} \times p = 10^{-5} \times 10^5 = 1 \text{ Pa s}^{-1} \]
The additional inward flux of mass is 1% of the total inward flux:

\[\Delta(\text{Flux})_{\text{in}} = 0.01 \times 10^9 = 10^7 \text{ kg s}^{-1} \]

Initially, the total mass of the cube was \(M = 10^{12} \text{ kg} \), so the fractional increase in mass in one second is

\[\frac{\Delta M}{M} = \frac{10^7}{10^{12}} = 10^{-5} \]

Pressure is proportional to mass. Therefore, the fractional increase in pressure is precisely the same.

To get the rate of increase in pressure, we multiply the total pressure by this ratio:

\[\frac{dp}{dt} = \frac{\Delta M}{M} \times p = 10^{-5} \times 10^5 = 1 \text{ Pa s}^{-1} \]

The rate of pressure increase is one Pascal per second.
A pressure tendency of 1 Pa s^{-1} may not sound impressive but, if sustained over a long period of time, it is dramatic.
A pressure tendency of 1 Pa s^{-1} may not sound impressive but, if sustained over a long period of time, it is dramatic.

We recall that there are 86,400 seconds in a day. For simplicity, we define a “day” to be 10^5 s (~ 28 hours).
A pressure tendency of 1 Pa s^{-1} may not sound impressive but, if sustained over a long period of time, it is dramatic. We recall that there are 86,400 seconds in a day. For simplicity, we define a “day” to be 10^5 s (~ 28 hours).

The pressure change in a “day” will then be the tendency (dp/dt) multiplied by the number of seconds in a “day”:

$$\Delta p = (1 \text{ Pa s}^{-1}) \times (10^5 \text{ s}) = 10^5 \text{ Pa}$$

Thus, the pressure will increase by 10^5 Pascals in a day.
A pressure tendency of 1 Pa s^{-1} may not sound impressive but, if sustained over a long period of time, it is dramatic.

We recall that there are 86,400 seconds in a day. For simplicity, we define a “day” to be 10^5 s (~ 28 hours).

The pressure change in a “day” will then be the tendency (dp/dt) multiplied by the number of seconds in a “day”:

$$\Delta p = (1 \text{ Pa s}^{-1}) \times (10^5 \text{ s}) = 10^5 \text{ Pa}$$

Thus, the pressure will increase by 10^5 Pascals in a day.

But this is the same as its initial value, so:

The pressure increases by 100% in a day!
A pressure tendency of 1 Pa s^{-1} may not sound impressive but, if sustained over a long period of time, it is dramatic.

We recall that there are 86,400 seconds in a day. For simplicity, we define a “day” to be $10^5 \text{ s} \ (\sim 28 \text{ hours})$.

The pressure change in a “day” will then be the tendency ($d\!p/d\!t$) multiplied by the number of seconds in a “day”:

$$
\Delta p = (1 \text{ Pa s}^{-1}) \times (10^5 \text{ s}) = 10^5 \text{ Pa}
$$

Thus, the pressure will increase by 10^5 Pascals in a day.

But this is the same as its initial value, so:

The pressure increases by 100% in a day!

And this is due to a difference in wind speed so small that we cannot even measure it ($\Delta u = 0.1 \text{ m s}^{-1}$).
An even more paradoxical conclusion is reached if we consider the speed at the western face to be 1% less than the outflow speed at the eastern face.

The above reasoning would suggest a decrease of pressure by 100% in a day, resulting in a total vacuum and leaving the citizens of London quite breathless.

⋆ ⋆ ⋆
An even more paradoxical conclusion is reached if we consider the speed at the western face to be 1% less than the outflow speed at the eastern face.

The above reasoning would suggest a decrease of pressure by 100% in a day, resulting in a total vacuum and leaving the citizens of London quite breathless.

⋆ ⋆ ⋆

Of course, there is a blunder in the reasoning: as the mass in the ‘cube’ decreases, its volume must decrease in proportion, since the density is constant.

The fluid depth, which we took to be constant, must decrease.

⋆ ⋆ ⋆
An even more paradoxical conclusion is reached if we consider the speed at the western face to be 1% less than the outflow speed at the eastern face.

The above reasoning would suggest a decrease of pressure by 100% in a day, resulting in a total vacuum and leaving the citizens of London quite breathless.

⋆ ⋆ ⋆

Of course, there is a blunder in the reasoning: as the mass in the ‘cube’ decreases, its volume must decrease in proportion, since the density is constant.

The fluid depth, which we took to be constant, must decrease.

⋆ ⋆ ⋆

Margules concluded that any attempt to forecast the weather was “immoral and damaging to the character of a meteorologist” (Fortak, 2001).
The Second Reading from

The Book of Limerick
Said Margules, with trepidation,
“There’s hazards with mass conservation:
Said Margules, with trepidation,
“There’s hazards with mass conservation:
Gross errors you’ll see
In dee-pee-dee-tee,
Said Margules, with trepidation, “There’s hazards with mass conservation: Gross errors you’ll see In dee-pee-dee-tee, Arising from blind computation”.
While the calculated pressure tendency is arithmetically correct, the resulting pressure change over a day is meteorologically preposterous. \textbf{Why?}

\begin{center}
\textbf{⋆ ⋆ ⋆}
\end{center}
While the calculated pressure tendency is arithmetically correct, the resulting pressure change over a day is meteorologically preposterous. Why?

We have extrapolated the instantaneous pressure change, assuming it to remain constant over a long time period.

An increase of pressure within the cube causes an immediate outward pressure gradient which opposes further change. Indeed, the result of this negative feedback is for overcompensation, and a cycle of pressure oscillations ensues.
These oscillations are known as gravity waves, and they radiate outwards with high speed from a localised disturbance, dispersing it over a wider area.

As soon as an imbalance arises in the atmosphere, these gravity waves act in such a way as to restore balance.
These oscillations are known as **gravity waves**, and they radiate outwards with high speed from a localised disturbance, dispersing it over a wider area.

As soon as an imbalance arises in the atmosphere, these gravity waves act in such a way as to **restore balance**.

Since they are of high frequency, they result in pressure changes which are large but which oscillate rapidly in time:

The instantaneous rate of change is not a reliable indicator of the long-term change.
These oscillations are known as **gravity waves**, and they radiate outwards with high speed from a localised disturbance, dispersing it over a wider area.

As soon as an imbalance arises in the atmosphere, these gravity waves act in such a way as to **restore balance**.

Since they are of high frequency, they result in pressure changes which are large but which oscillate rapidly in time: **The instantaneous rate of change is not a reliable indicator of the long-term change.**

The computational **time step** has to be short enough to allow the adjustment process to take place.

Then, gravity-wave oscillations may be present, but they need not spoil the forecast.
Gravity-wave oscillations may be effectively removed by a *minor adjustment of the initial data*; this process is called *initialization*.

Modern numerical forecasts are made using the continuity equation, but initialization controls excessive gravity wave noise and a small time step ensures that the calculations remain stable.

⋆ ⋆ ⋆
Gravity-wave oscillations may be effectively removed by a *minor adjustment of the initial data*; this process is called *initialization*.

Modern numerical forecasts are made using the continuity equation, but initialization controls excessive gravity wave noise and a small time step ensures that the calculations remain stable.

*Bjerknes ruled out analytical solution of the mathematical equations, due to their nonlinearity and complexity.

However, there was a scientist more bold — or foolhardy — than Bjerknes, who actually tried to calculate future weather. This was *Lewis Fry Richardson*
Richardson’s Forecast

During the First World War, Lewis Fry Richardson carried out a manual calculation of the change in pressure over Central Europe (Richardson, 1922).

His initial data were based on a series of synoptic charts published in Leipzig by Vilhelm Bjerknes.

Using Bjerknes’ charts, he extracted the relevant values on a discrete grid, and computed the rate of change of pressure for a region in Southern Germany.
Richardson’s Forecast

During the First World War, Lewis Fry Richardson carried out a manual calculation of the change in pressure over Central Europe (Richardson, 1922).

His initial data were based on a series of synoptic charts published in Leipzig by Vilhelm Bjerknes.

Using Bjerknes’ charts, he extracted the relevant values on a discrete grid, and computed the rate of change of pressure for a region in Southern Germany.

To do this, he used the continuity equation, employing precisely the method which Margules had shown more than ten years earlier to be seriously problematical.

As is well known, the resulting “prediction” of pressure change was completely unrealistic.
Lewis Fry Richardson, 1881–1953.
• Born, 11 October, 1881, Newcastle-upon-Tyne
• Family background: well-known quaker family
• 1900–1904: Kings College, Cambridge
• 1913–1916: Met. Office. Superintendent, Eskdalemuir Observatory
• Resigned from Met Office in May, 1916. Joined Friends’ Ambulance Unit.
• 1919: Re-employed by Met. Office
• 1920: M.O. linked to the Air Ministry. LFR Resigned, on grounds of conscience
• 1922: *Weather Prediction by Numerical Process*
• 1926: Break with Meteorology. Worked on Psychometric Studies. Later on Mathematical causes of Warfare
• 1940: Resigned to pursue “peace studies”
• Died, September, 1953.

Richardson contributed to Meteorology, Numerical Analysis, Fractals, Psychology and Conflict Resolution.
The Finite Difference Scheme

The globe is divided into cells, like the checkers of a chess-board.
Spatial derivatives are replaced by finite differences:
\[
\frac{df}{dx} \to f(x + \Delta x) - f(x - \Delta x) \quad \frac{2\Delta x}{2\Delta x}.
\]
Similarly for time derivatives:
\[
\frac{dQ}{dt} \to \frac{Q^{n+1} - Q^{n-1}}{2\Delta t} = F^n
\]
This can immediately be solved for \(Q^{n+1} \):
\[
Q^{n+1} = Q^{n-1} + 2\Delta tF^n.
\]
By repeating the calculations for many time steps, we can get a forecast of any length.

Richardson calculated only the initial rates of change.
Bjerknes’ sea level pressure analysis.

Bjerknes’ 500 hPa height analysis.

Some of the initial data for Richardson’s “forecast”.

The Leipzig Charts for 0700 UTC, May 20, 1910
Richardson’s Computing Form \(P_{XIII} \)

The figure in the bottom right corner is the forecast change in surface pressure: \(145 \text{ mb in six hours!} \)
Richardson’s Computing Form \(P_{XIII} \)

The figure in the bottom right corner is the forecast change in surface pressure: **145 mb in six hours!**

In SI units, the pressure change was **14500 Pa.**
Smooth Evolution of Pressure
Noisy Evolution of Pressure
Tendency of a Smooth Signal
Tendency of a Noisy Signal
The Third Reading from

The Book of Limerick
Young Richardson wanted to know
How quickly the pressure would grow.
Young Richardson wanted to know
How quickly the pressure would grow.
But, what a surprise, ’cos
The six-hourly rise was,
Young Richardson wanted to know
How quickly the pressure would grow.
But, what a surprise, ’cos
The six-hourly rise was,
In Pascals, One Four Five Oh Oh!
Richardson’s Forecast Factory (A. Lannerback).
Dagens Nyheter, Stockholm. Reproduced from L. Bengtsson, ECMWF, 1984
Richardson’s Forecast Factory (A. Lannerback).

64,000 Computers: The first Massively Parallel Processor
Advances 1920–1950

- **Dynamic Meteorology**
 - Rossby Waves
 - Quasi-geostrophic Theory
 - Baroclinic Instability

- **Numerical Analysis**
 - CFL Criterion

- **Atmospheric Observations**
 - Radiosonde

- **Electronic Computing**
 - ENIAC
The ENIAC
Von Neumann’s idea:
Weather forecasting was a scientific problem *par excellence* for solution using a large computer.

The objective of the project was to study the problem of predicting the weather by simulating the dynamics of the atmosphere using a digital electronic computer.

A Proposal for funding listed three “possibilities”:

1. Entirely new methods of weather prediction by calculation will have been made possible;

2. A new rational basis will have been secured for the planning of physical measurements and field observations;

3. The first step towards influencing the weather by rational human intervention will have been made.
The ENIAC (Electronic Numerical Integrator and Computer) was the first multi-purpose programmable electronic digital computer. It had:

- 18,000 vacuum tubes
- 70,000 resistors
- 10,000 capacitors
- 6,000 switches

Power Consumption: 140 kWatts
ENIAC was a **decimal machine**. No high-level language. Assembly language. **Fixed-point arithmetic**: \(-1 < x < +1\).

10 registers, that is, **Ten words of high-speed memory**.

Function Tables:
624 6-digit words of “ROM”, set on ten-pole rotary switches.

“Peripheral Memory”:
Punch-cards.

Speed: FP multiply: 2ms (say, **500 Flops**).

Access to Function Tables: **1ms**.

Access to Punch-card equipment: **You can imagine!**
Jule Charney found the solution to the noise problem: he derived the the Quasi-geostrophic equations.

The Q-geostrophic equations are a Filtered System.

They have solutions corresponding to “weather waves” but no solutions corresponding to “noise waves”.

⋆ ⋆ ⋆
Jule Charney found the solution to the noise problem: he derived the Quasi-geostrophic equations. The Q-geostrophic equations are a Filtered System. They have solutions corresponding to “weather waves” but no solutions corresponding to “noise waves”.

Evolution of the Project:

• Plan A: Integrate the Primitive Equations
 Problems similar to Richardson’s would arise
• Plan B: Integrate baroclinic Q-G System
 Too computationally demanding
• Plan C: Solve barotropic vorticity equation
 Very satisfactory initial results
The Fourth Reading from
The Book of Limerick
Jule Charney was quite philosophic: “The system called Q-geostrophic,
Jule Charney was quite philosophic:
“The system called *Q*-geostrophic,
With filtered equations
Sans fast oscillations,
Jule Charney was quite philosophic:
“The system called Q-geostrophic,
With filtered equations
$sans$ fast oscillations,
Will obviate trends catastrophic”.

Charney, Fjørtoft, von Neumann

\[
\begin{bmatrix}
\text{Absolute Vorticity} \\
\text{Vorticity}
\end{bmatrix}
= \begin{bmatrix}
\text{Relative Vorticity} \\
\text{Vorticity}
\end{bmatrix}
+ \begin{bmatrix}
\text{Planetary Vorticity}
\end{bmatrix}
\eta = \zeta + f.
\]

The atmosphere is treated as a single layer, and the flow is assumed to be nondivergent. **Absolute vorticity is conserved following the flow.**

\[
\frac{d(\zeta + f)}{dt} = 0.
\]

This equation looks deceptively simple. But it is **nonlinear:**

\[
\frac{\partial \zeta}{\partial t} + \mathbf{V} \cdot \nabla (\zeta + f) = 0.
\]

Or, in more detail:

\[
\frac{\partial}{\partial t} \nabla^2 \psi + \left\{ \frac{\partial \psi \partial \nabla^2 \psi}{\partial x \partial y} - \frac{\partial \psi \partial \nabla^2 \psi}{\partial y \partial x} \right\} + \beta \frac{\partial \psi}{\partial x} = 0,
\]
Solution method for BPVE

\[\frac{\partial \zeta}{\partial t} = -\mathbf{J}(\psi, \zeta + f) \]

1. Compute Jacobian
2. Step forward (Leapfrog scheme)
3. Solve Poisson equation for \(\psi \) (Fourier expansion)
4. Go to (1).

- Timestep: \(\Delta t = 1 \) hour (2 and 3 hours also tried)
- Gridstep: \(\Delta x = 750 \) km (approximately)
- Gridsize: \(18 \times 15 = 270 \) points
- Elapsed time for 24 hour forecast: About 24 hours.

Forecast involved **punching about 25,000 cards**. Most of the elapsed time was spent handling these.
ENIAC Algorithm

FUNCTION TABLES
- Coriolis parameter
- Map factor
- Scale factors

ENIAC OPERATIONS
- Time-step extrapolation
- New height and new vorticity
- Jacobian (vorticity advection)
- Vorticity tendency
- First Fourier transform (x)
- x-transform of vorticity tendency
- Second Fourier transform (y)
- yx-transform of vorticity tendency
- Third Fourier transform (y)
- yyx-transform of vorticity tendency
- Fourth Fourier transform (x)
- Height tendency
- Interleave height and vorticity tendencies

PUNCH-CARD OUTPUT
- Prepare input deck for Operation 4
- Prepare input deck for Operation 8
- Prepare input deck for Operation 11
- Prepare input deck for Operation 13
- Prepare input deck for Operation 15

PUNCH-CARD OPERATIONS
- Prepare input deck for Operation 1
ENIAC: First Computer Forecast
Richardson’s reaction

“Allow me to congratulate you and your collaborators on the remarkable progress which has been made in Princeton.

“This is . . . an enormous scientific advance on the single, and quite wrong, result in which Richardson (1922) ended.”
Old Richardson’s fabulous notion
Of forecasting turbulent motion
Old Richardson’s fabulous notion
Of forecasting turbulent motion
Seemed totally off-the-track,
Old Richardson’s fabulous notion
Of forecasting turbulent motion
Seemed totally off-the-track,
But then came the ENIAC,
To model the air and the ocean.
The Joint Numerical Weather Prediction (JNWP) Unit was established on July 1, 1954:

- **Air Weather Service of US Air Force**
- **The US Weather Bureau**
- **The Naval Weather Service.**

Operational numerical forecasting began on 15 May, 1955, using a three-level quasi-geostrophic model.
GAS LAW (Boyle’s Law and Charles’ Law.)
Relates the pressure, temperature and density

CONTINUITY EQUATION
Conservation of mass; air neither created nor destroyed

WATER CONTINUITY EQUATION
Conservation of water (liquid, solid and gas)

EQUATIONS OF MOTION: Navier-Stokes Equations
Describe how the change of velocity is determined by the pressure gradient, Coriolis force and friction

THERMODYNAMIC EQUATION
Determines changes of temperature due to heating or cooling, compression or rarifaction, etc.

Seven equations; seven variables \((u, v, w, \rho, p, T, q)\).
The Primitive Equations

\[
\begin{align*}
\frac{du}{dt} - \left(\frac{f + u \tan \phi}{a} \right) v + \frac{1}{\rho} \frac{\partial p}{\partial x} + F_x &= 0 \\
\frac{dv}{dt} + \left(\frac{f + u \tan \phi}{a} \right) u + \frac{1}{\rho} \frac{\partial p}{\partial y} + F_y &= 0 \\
p &= R \rho T \\
\frac{\partial p}{\partial y} + g \rho &= 0 \\
\frac{dT}{dt} + (\gamma - 1) T \nabla \cdot \mathbf{V} &= \frac{Q}{c_p} \\
\frac{\partial \rho}{\partial t} + \nabla \cdot \rho \mathbf{V} &= 0 \\
\frac{\partial \rho_w}{\partial t} + \nabla \cdot \rho_w \mathbf{V} &= \text{[Sources} - \text{Sinks]} \\
\end{align*}
\]

Seven equations; seven variables \((u, v, w, p, T, \rho, \rho_w)\).
Scientific Weather Forecasting in a Nut-Shell

- The atmosphere is a **physical system**
- Its behaviour is governed by the **laws of physics**
- These laws are expressed **quantitatively** in the form of **mathematical equations**
- Using **observations**, we can specify the atmospheric state at a given initial time: **“Today’s Weather”**
- Using **the equations**, we can calculate how this state will change over time: **“Tomorrow’s Weather”**
Scientific Weather Forecasting in a Nutshell

- The atmosphere is a physical system
- Its behaviour is governed by the laws of physics
- These laws are expressed quantitatively in the form of mathematical equations
- Using observations, we can specify the atmospheric state at a given initial time: “Today’s Weather”
- Using the equations, we can calculate how this state will change over time: “Tomorrow’s Weather”
- The equations are very complicated (non-linear) and a powerful computer is required to do the calculations
- The accuracy decreases as the range increases; there is an inherent limit of predictibility.
Progress in numerical weather prediction over the past fifty years has been quite dramatic.

Forecast skill continues to increase.
Progress in numerical weather prediction over the past fifty years has been quite dramatic.

Forecast skill continues to increase.

However, there is a limit...
In a paper published in 1963, entitled *Deterministic Nonperiodic Flow*, Edward Lorenz showed that the simple system

\[
\begin{align*}
\dot{x} &= -\sigma x + \sigma y \\
\dot{y} &= -xz + rx \\
\dot{z} &= +xy - bz
\end{align*}
\]

has solutions which are highly sensitive to the initial conditions.
The characteristic *butterfly pattern* in Lorenz’s Equations.
Lorenz’s work demonstrated the practical impossibility of making accurate, detailed long-range weather forecasts. This problem can be traced back to Poincaré, but it was Lorenz who formulated it in precise, quantitative terms.
Lorenz’s work demonstrated the **practical impossibility** of making accurate, detailed long-range weather forecasts.

This problem can be traced back to Poincaré, but it was Lorenz who formulated it in precise, quantitative terms.

In his 1963 paper he wrote:

“... one flap of a sea-gull’s wings may forever change the future course of the weather.”
Lorenz’s work demonstrated the practical impossibility of making accurate, detailed long-range weather forecasts. This problem can be traced back to Poincaré, but it was Lorenz who formulated it in precise, quantitative terms.

In his 1963 paper he wrote:

“... one flap of a sea-gull’s wings may forever change the future course of the weather.”

Within a few years, he had changed species:

“Predictability: does the flap of a butterfly’s wings in Brazil set off a tornado in Texas?”

[Title of a lecture at an AAAS conference in Washington.]
The Sixth Reading from
The Book of Limerick
Lorenz demonstrated, with skill,
The chaos of heat-wave and chill:
Lorenz demonstrated, with skill,
The chaos of heat-wave and chill:
Tornadoes in Texas
Are formed by the flexes
Of butterflies’ wings in Brazil.
Weather forecasts lose skill because of the growth of errors in the initial conditions (initial uncertainties) and because numerical models describe the atmosphere only approximately (model uncertainties).
Flow-dependent Predictability

Weather forecasts lose skill because of the growth of errors in the initial conditions (initial uncertainties) and because numerical models describe the atmosphere only approximately (model uncertainties).

As a further complication, predictability is flow-dependent.

The Lorenz model illustrates variations in predictability for different initial conditions.
Variation in Predictability

Highly Predictable

Highly Unpredictable
Spaghetti plots for ensembles from two starting times.
In recognition of the chaotic nature of the atmosphere, focus has now shifted to predicting the probability of alternative weather events rather than a single outcome.
Ensemble Forecasting

In recognition of the chaotic nature of the atmosphere, focus has now shifted to predicting the probability of alternative weather events rather than a single outcome.

The mechanism is the *Ensemble Prediction System* (EPS) and the world leader in this area is the European Centre for Medium-range Weather Forecasts (ECMWF).
A Sample Ensemble Forecast

The figure shows the verifying analysis (top left), and 15 132-hour (6.5 day) forecasts of sea-level pressure starting from slightly different conditions.
Ensemble of fifty forecasts from ECMWF.
These products are produced routinely and used operationally in the member states.
The Seventh (and last) Reading
from The Book of Limerick
The Seventh (and last) Reading
from The Book of Limerick

If errors still bother you, Tough! Uncertainty is The Right Stuff.
If errors still bother you, Tough!

_Uncertainty is _The Right Stuff._

It’s anyone’s guess,

So use E-P-S,

From _E-C-M-Double-you-uhf._
Thank you