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The Laplace Transform: Definition

For a function of time f (t), t ≥ 0, the LT is defined as

f̂ (s) =

∫ ∞
0

e−st f (t) dt .

Here, s is complex and f̂ (s) is a complex function of s.

I The domain of the function f (t) is D = [0,+∞).
I The kernel of the transform is K (s, t) = exp(−st).
I The domain of the LT f̂ (s) is the complex s-plane.
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Recovering the Original Function

For the LT, the inversion formula is

f (t) =
1

2πi

∫
C1

est f̂ (s) ds .

where C1 is a contour in the s-plane:

I C1 is parallel to the imaginary axis.
I C1 is to the right of all singularities of f̂ (s).

For the functions that we consider, the singularities
are poles on the imaginary axis.

Thus, the contour C1 must be in the right half-plane.
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A Simple Oscillation

Let f (t) have a single harmonic component

f (t) = α exp(iωt)

The LT of f (t) has a simple pole at s = iω:

f̂ (s) =
α

s − iω
,

A pure oscillation in time transforms to a
holomorphic function, with a single pole.

The frequency of the oscillation determines the
position of the pole.
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LF and HF oscillations and their transforms
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The inverse transform of f̂ (s) is

f (t) =
1

2πi

∫
C1

est f̂ (s) ds =
1

2πi

∫
C1

α exp(st)

s − iω
ds .

We augment C1 by a semi-circular arc C2 in the left
half-plane. Denote the resulting closed contour by

C0 = C1 ∪ C2 .

In cases of interest, we can show that this leaves the
value of the integral unchanged (see Doetsch, 1977).

Then f (t) is an integral around a closed contour C0.
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Contribution from C2 vanishes in limit of infinite radius
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For an integral around a closed contour,

f (t) =
1

2πi

∮
C0

α exp(st)

s − iω
ds ,

we can apply the residue theorem:

f (t) =
∑
C0

[
Residues of

(
α exp(st)

s − iω

)]
so f (t) is the sum of the residues of the integrand
within the contour C0.
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There is just one pole, at s = iω. The residue is

lim
s→iω

(s − iω)

(
α exp(st)

s − iω

)
= α exp(iωt)

So we recover the input function:

f (t) = α exp(iωt)
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A Two-Component Oscillation

Let f (t) have two harmonic components

f (t) = a exp(iωt) + A exp(iΩt) |ω| � |Ω|

The LT is a linear operator, so the transform of f (t) is

f̂ (s) =
a

s − iω
+

A
s − iΩ

,

which has two simple poles, at s = iω and s = iΩ.

I The LF pole, at s = iω, is close to the origin.
I The HF pole, at s = iΩ, is far from the origin.
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Again

f̂ (s) =
a

s − iω
+

A
s − iΩ

.

The inverse transform of f̂ (s) is

f (t) =
1

2πi

∮
C0

a exp(st)

s − iω
ds +

1
2πi

∮
C0

A exp(st)

s − iΩ
ds

= a exp(iωt) + A exp(iΩt) .

We now replace C0 by a circular contour C? centred at
the origin, with radius γ such that |ω| < γ < |Ω|.
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We denote the modified operator by L?.

Since the pole s = iω falls within the contour C?,
it contributes to the integral.

Since the pole s = iΩ falls outside the contour C?,
it makes no contribution.

Therefore,

f ?(t) ≡ L?{f̂ (s)} =
1

2πi

∮
C?

a exp(st)

s − iω
ds = a exp(iωt) .

We have filtered f (t): the function f ?(t) is the LF
component of f (t). The HF component is gone.
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Approximating the Contour C?
We replace the circle C? by an N-gon C?N:
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Numerical approximation: the inverse

L?{f̂ (s)} =
1

2πi

∮
C?

exp(st) f̂ (s) ds

is approximated by the summation

L?
N{f̂ (s)} =

1
2πi

N∑
n=1

exp(snt) f̂ (sn) ∆sn

We introduce a correction factor, and arrive at:

L?
N{f̂ (s)} =

1
N

N∑
n=1

expN(snt) f̂ (sn) sn

Here expN(z) is the N-term Taylor expansion of exp(z).
(For details, see Clancy and Lynch, 2011a)
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Applying LT to an ODE
We consider a nonlinear ordinary differential equation

dw
dt

+ iωw + n(w) = 0 w(0) = w0

The LT of the equation is

(sŵ − w0) + iωŵ +
n0

s
= 0 .

We have frozen n(w) at its initial value n0 = n(w0).

We can immediately solve for the transform solution:

ŵ(s) =
1

s + iω

[
w0 −

n0

s

]
=

(
w0

s + iω

)
+

n0

iω

(
1

s + iω
− 1

s

)
There are two poles, at s = −iω and at s = 0.
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The solution is:

w?(t) =


(

w0 +
n0

iω

)
exp(−iωt)− n0

iω
: |ω| < γ

−n0

iω
: |ω| > γ

High frequencies are filtered out.

This corresponds to dropping the time derivative and
holding the nonlinear term at its initial value:
the criterion for nonlinear normal mode initialization.
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A General NWP Equation

We write the general NWP equations symbolically as

dX
dt

+ i LX + N(X) = 0

where X(t) is the state vector at time t .

We apply the Laplace transform to get

(s X̂− X0) + i LX̂ +
1
s

N0 = 0

where X0 is the initial value of X and N0 = N(X0) is
held constant at its initial value.
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Now we take n∆t to be the initial time:

(s X̂− Xn) + i LX̂ +
1
s

Nn = 0

The solution can be written formally:

X̂(s) = (s I + i L)−1
[
Xn − 1

s
Nn
]

We recover the filtered solution at time (n + 1)∆t by
applying L? at time ∆t beyond the initial time:

X?((n + 1)∆t) = L?{X̂(s)}
∣∣∣
t=∆t

The procedure may now be iterated to produce a
forecast of any length.

Further details are given in Clancy and Lynch, 2011a,b
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Phase Errors of SI and LT Schemes
Consider the phase error of the oscillation equation

du
dt

+ iω u = 0 R =
Numerical frequency
Physical frequency

For the semi-implicit (SI) scheme, the error is

RSI = 1− 1
12

(ω∆t)2

For the LT scheme, the corresponding error is

RLT = 1− 1
N!

(ω∆t)N

Even for modest values of N, this is negligible.
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Relative phase errors for semi-implicit (SI) and Laplace
transform (LT) schemes for Kelvin waves m = 1 and m = 5.
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Hourly height at 0.0◦E, 0.9◦N over 10 hours, with τc = 3 h.
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Lagrangian Formulation
We now consider how to combine the Laplace
transform approach with Lagrangian advection.

The general form of the equation is

DX
Dt

+ i LX + N(X) = 0

where advection is now included in the time
derivative.

We re-define the Laplace transform to be the integral
in time along the trajectory of a fluid parcel:

X̂(s) ≡
∫
T

e−st X(t) dt
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We compute L along a fluid trajectory T .
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We consider parcels that arrive at the gridpoints at
time (n + 1)∆t . They originate at locations not
corresponding to gridpoints at time n∆t .

I The value at the arrival point is Xn+1
A .

I The value at the departure point is Xn
D.

The initial values when transforming the Lagrangian
time derivatives are Xn

D.

The equations thus transform to

(s X̂− Xn
D) + i LX̂ +

1
s

N
n+

1
2

M = 0

where we evaluate nonlinear terms at a mid-point,
interpolated in space and extrapolated in time.

Basic Theory N-gon ODEs NWP Kelvin Lagrange Resonance Analytic Results



We consider parcels that arrive at the gridpoints at
time (n + 1)∆t . They originate at locations not
corresponding to gridpoints at time n∆t .

I The value at the arrival point is Xn+1
A .

I The value at the departure point is Xn
D.

The initial values when transforming the Lagrangian
time derivatives are Xn

D.

The equations thus transform to

(s X̂− Xn
D) + i LX̂ +

1
s

N
n+

1
2

M = 0

where we evaluate nonlinear terms at a mid-point,
interpolated in space and extrapolated in time.

Basic Theory N-gon ODEs NWP Kelvin Lagrange Resonance Analytic Results



We consider parcels that arrive at the gridpoints at
time (n + 1)∆t . They originate at locations not
corresponding to gridpoints at time n∆t .

I The value at the arrival point is Xn+1
A .

I The value at the departure point is Xn
D.

The initial values when transforming the Lagrangian
time derivatives are Xn

D.

The equations thus transform to

(s X̂− Xn
D) + i LX̂ +

1
s

N
n+

1
2

M = 0

where we evaluate nonlinear terms at a mid-point,
interpolated in space and extrapolated in time.

Basic Theory N-gon ODEs NWP Kelvin Lagrange Resonance Analytic Results



We consider parcels that arrive at the gridpoints at
time (n + 1)∆t . They originate at locations not
corresponding to gridpoints at time n∆t .

I The value at the arrival point is Xn+1
A .

I The value at the departure point is Xn
D.

The initial values when transforming the Lagrangian
time derivatives are Xn

D.

The equations thus transform to

(s X̂− Xn
D) + i LX̂ +

1
s

N
n+

1
2

M = 0

where we evaluate nonlinear terms at a mid-point,
interpolated in space and extrapolated in time.

Basic Theory N-gon ODEs NWP Kelvin Lagrange Resonance Analytic Results



Departure point, arrival point and mid-point.
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The solution can be written formally:

X̂(s) = (s I + i L)−1
[
Xn

D −
1
s

N
n+

1
2

M

]

The values at the departure point and mid-point are
computed by interpolation.

We recover the filtered solution by applying L? at time
(n + 1)∆t , or ∆t after the initial time:

X?((n + 1)∆t) = L?{X̂(s)}
∣∣∣
t=∆t

The procedure may now be iterated to produce a
forecast of any length.

Further details are given in Clancy and Lynch, 2011a,b
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Further details are given in Clancy and Lynch, 2011a,b
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Orographic Resonance

I Spurious resonance arises from coupling the
semi-Lagrangian and semi-implicit methods

I Linear analysis of orographically forced
stationary waves confirms this

I This motivates an investigating of
orographic resonance in a full model.

Test Case:
I Initial data: ERA-40 analysis of 12 UTC on

12th February 1979
I Used by Ritchie & Tanguay (1996) and by

Li & Bates (1996)
I Running at T119 resolution
I Shows LT method has benefits over SI scheme.
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Analytical Inversion

We now consider the LT scheme with the inverse
computed analytically.

This yields a filtered system. We relate it to the
filtering schemes of Daley (1980).

The procedure requires explicit knowledge of the
positions of the poles of the function to be inverted.

For the Eulerian model, this is simple.

For the Lagrangian model, a transformation to normal
mode space is required.
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We can write the general, diagonalized system:

dW
dt

+ i ΩW + NW(X) = 0 .

We separate this into LF and HF components:

dY
dt

+ i ΩYY + NY(Y,Z) = 0

dZ
dt

+ i ΩZZ + NZ(Y,Z) = 0

The slow equations are formed by setting the
tendencies of the fast components to zero
(Daley, 1980, Lynch, 1989):

dY
dt

+ i ΩYY + NY(Y,Z) = 0

i ΩZZ + NZ(Y,Z) = 0
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We take the transform of the general equation

dX
dt

+ i LX + N(X) = 0

L is a linear operator. N is a nonlinear vector function.

I Transform analytically
I Diagonalize the system
I Invert analytically using L∗

Yn+1 = Yn exp(−2iΩY∆t)− (iΩY)−1Nn
Y[1− exp(−2iΩY∆t)]

Zn+1 = −(iΩZ)−1Nn
Z

So, Yn+1 is the analytical solution at time (n + 1)∆t for
NY constant, and Z satisfies a balance equation.
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These equations correspond essentially to Daley’s
(1980) Scheme B.

There is a close relationship between the Laplace
transform scheme and Daley’s filtered scheme.

The slow components in Daley’s Scheme B are
calculated by a leapfrog method.

For the LT scheme, they are analytical solutions
(for constant NY).
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A Reasonable Question
If we simply return to the time domain, why bother
with the Laplace Transform at all?

Because it provides guidance and insight!

By analogy, consider a time filter:

yn =
+N∑

h=−N

ah xn−h

This is defined completely in the time domain;

But it is greatly illuminated by considering the
response in the frequency domain.
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LT scheme in the STSWM Eulerian model

The transformed spectral equations are:

η̂m
` =

1
s
{ηm

` }
n−1

+
1
s2 {N

m
` }

n

δ̂m
` = d

(
R+

1
s
`(` + 1)

a2 Q
)

Φ̂m
` = d

(
Q− 1

s
Φ̄∗R

)
where the poles of d , Q and R are known.
For example, d = s2/(s2 + ω2

` ).

By inspection, we can apply the analytical operator L∗

to obtain the solution.
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The technicalities for the Lagrangian model are
non-trivial

We must move back and forth between physical
space and Hough space

In principle, it is straightforward;
In practice, it is intricate.

Details are in a paper in preparation.
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Results with Eulerian Model

In all Eulerian simulations:
I ∆t = 600 s
I Spectral resolution T119
I No explicit diffusion included
I Normalised `∞ error measure
I Ref: Semi-implicit T213 with ∆t = 90 s
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Eulerian Model: Mountain flow (Case 5)

First plot:
I Reference SI scheme
I Numerical LT with N = 8, cutoff period 3 hours
I Numerical LT with N = 8, cutoff period 1 hour.

Second plot:
I Reference SI scheme
I Analytical LT with cutoff period 3 hours
I Analytical LT with cutoff period 1 hour.
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Eulerian Model: Rossby-Haurwitz (Case 6)

First plot:
I Reference SI scheme
I Numerical LT with N = 8, cutoff period 3 hours
I Numerical LT with N = 8, cutoff period 1 hour.

Second plot:
I Reference SI scheme
I Analytical LT with cutoff period 3 hours
I Analytical LT with cutoff period 1 hour.
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Remarks

The truncation to N=8 has a big effect, particularly in
Case 5. The choice of cutoff period is important.

Clearly there are motions of frequency between one
and three hours that are being damaged and damped

In the analytic case, this isn’t an issue:
the two integrations match closely.
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Results with Lagrangian Model

In all Lagrangian simulations:
I Cutoff period of 1 hour
I Spectral resolution T119
I Normalised `∞ error measure
I SETTLS treatment of the rhs nonlinear terms
I Back trajectories: McGregor scheme (MWR 1993)
I Reference: Semi-implicit T213 with ∆t = 90 s

[Also run with trajectory scheme of GEM model].
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Lagrange Model: Mountain flow (Case 5)

Both plots:
I Numerical LT with N = 8
I Analytical LT
I Cutoff period: 1 hour in both cases
I Reference: Semi-implicit scheme.

Time steps
I First plot: ∆t = 600 s
I Second plot: ∆t = 1800 s
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Remarks

In the Lagrangian case, there is more potential for
error, with Hough mode transformations and
numerical inversion of matrices.

The Rossby wave case looks terrible!

We make approximations of the form

f̂ ζ = f ζ̂ , β̂ u = β û

These may be insufficiently accurate.

We are investigating this issue.
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Conclusion

Old Results
I LT scheme effectively filters HF waves
I LT scheme more accurate than SI scheme
I LT scheme has no orographic resonance.

New Results
I Analytical LT more accurate than numerical
I Lagrangian scheme: more work needed
I Problems remain with Coriolis terms.
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Thank you
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