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Outline of the Lecture

�Pre-history of NWP

�Richardson’s Forecast

�The ENIAC Integrations

Interlude

�Data Assimilation

�Ensemble Prediction

�Spherical Grids

2



Increase in Forecasting Skill
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Relevant Mathematical Areas

�Partial Differential Equations

�Numerical Analysis

�Linear Algebra

�Variational Methods

�Dynamical Systems

�Geometry of the Sphere

Something for everyone!
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Ancient Times

5



Galileo Galilei (1564–1642)

Galileo formulated the basic
law of falling bodies, which he
verified by careful measure-
ments.

He constructed a telescope,
with which he studied lu-
nar craters, and discovered
four moons revolving around
Jupiter.

Galileo is credited with the in-
vention of the Thermometer.

Thus began quantitative measurements of the atmosphere.
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Evangelista Torricelli

Evangelista Torricelli
(1608–1647), a student
of Galileo, devised
the first accurate
barometer.

Torricelli’s Theorem:

v =
√

2gh

Torricelli inventing the barometer
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Newton’s Law of Motion

The rate of change of momentum of a body is equal to the
sum of the forces acting on the body.

If F is the total applied force, Newton’s Second Law gives

a differential equation:

dp

dt
= F .

The acceleration a is the rate of change of velocity, that is,
a = dV/dt. If the mass m is constant, we have

F = ma .

Force = Mass×Acceleration .
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Euler’s Equations for Fluid Flow

Leonhard Euler

• Born in Basel in 1707.

• Died 1783 in St Petersburg.

• Formulated the equations
for incompressible, inviscid
fluid flow:

∂V

∂t
+ V · ∇V +

1

ρ
∇p = g .

∇ ·V = 0

Partial differential equations.
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Jean Le Rond d’Alembert

A body moving at constant speed through a gas or a fluid
does not experience any resistance (D’Alembert 1752).
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George G Stokes, 1819–1903

George Gabriel Stokes, founder of modern hydrodynamics.
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ASIDE: Stokes’ Theorem

∮
Γ
V·dl =

∫ ∫
Σ
∇×V · n da .

Stokes’ Theorem was actually discovered by Kelvin in 1854.
It is of central importance in fluid dynamics.

It leads on to Bjerknes’ Circulation Theorem:

dC

dt
= −

∫ ∫
Σ
∇1

ρ
×∇p·da = −

∮
Γ

dp

ρ
,

which generalized Kelvin’s Circulation Theorem to baro-
clinic fluids (ρ varying independently of p), and ushered in
the study of Geophysical Fluid Dynamics.
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Resolution of d’Alembert’s Paradox

The minutest amount of viscosity has a profound
qualitative impact on the character of the solution.

The Navier-Stokes equations incorporate the effect of
viscosity.
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The Navier-Stokes Equations

Euler’s Equations:
∂V

∂t
+ V · ∇V +

1

ρ
∇p = g .

The Navier-Stokes Equations
∂V

∂t
+ V · ∇V +

1

ρ
∇p = ν∇2V + g? .

Motion on the rotating Earth:
∂V

∂t
+ V · ∇V + 2Ω×V +

1

ρ
∇p = ν∇2V + g .

14



15



The Inventors of Thermodynamics
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The Primitive Equations

du

dt
−
(
f +

u tanφ

a

)
v +

1

ρ

∂p

∂x
+ Fx = 0

dv

dt
+

(
f +

u tanφ

a

)
u +

1

ρ

∂p

∂y
+ Fy = 0

p = RρT
∂p

∂z
+ gρ = 0

dT

dt
+ (γ − 1)T∇ ·V =

Q

cp
∂ρ

∂t
+∇ · ρV = 0

∂ρw
∂t

+∇ · ρwV = [Sources− Sinks]

Seven equations; seven variables (u, v, w, p, T, ρ, ρw).
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Scientific Weather Forecasting in a Nut-Shell

• The atmosphere is a physical system

• Its behaviour is governed by the laws of physics

• These laws are expressed quantitatively in the form of
mathematical equations

• Using observations, we can specify the atmospheric state
at a given initial time: “Today’s Weather”

• Using the equations, we can calculate how this state will
change over time: “Tomorrow’s Weather”

• The equations are very complicated (non-linear) and a
powerful computer is required to do the calculations

• The accuracy decreases as the range increases; there is
an inherent limit of predictibility.
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Richardson’s Forecast
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Lewis Fry Richardson, 1881–1953.
During WWI, Richardson
computed by hand the
pressure change at a
single point.

It took him two years !

His ‘forecast’ was a
catastrophic failure:

∆p = 145 hPa in 6 hrs

But Richardson’s method was scientifically sound.
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Tendency of a Noisy Signal
x
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Evolution of surface pressure before and after NNMI.
(Williamson and Temperton, 1981)
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Initialization of Richardson’s Forecast

Richardson’s Forecast has been repeated on a computer.

The atmospheric observations for 20 May, 1910, were
recovered from original sources.

�ORIGINAL:
dps
dt

= +145 hPa/6 h

� INITIALIZED:
dps
dt

= −0.9 hPa/6 h

Observations: The barometer was steady!
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Richardson’s Forecast Factory

c©François Schuiten

64,000 Computers: The first Massively Parallel Processor
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The Finite Difference Scheme

Let Q be governed by an equation

dQ

dt
= F (Q) .

The time interval under consideration is sliced into a finite
number of discrete time steps {0,∆t, 2∆t, . . . , n∆t, . . . }.

The time derivitive is approximated by a finite difference:

dQ

dt
≈ Q(t + ∆t)−Q(t−∆t)

2∆t
.

Thus, a problem in analysis becomes a problem in algebra.
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Reversing History

Differential calculus depends upon justifying the limiting
process ∆t→ 0.

In approximating a differential equation, we reverse the pro-
cedure, and replace derivatives by ratios of increments.

We thus “ . . . return to the manner in which they did
things before the calculus was invented . . . ” (Richardson)

26



Stepping Forward
The time derivative in

dQ

dt
= F (Q) .

is now approximated by a centered difference

Qn+1 −Qn−1

2∆t
= Fn ,

Then

Qn+1 = Qn−1 + 2∆t F n .

This process of stepping forward is repeated a large number
of times, until the desired forecast range is reached.

We can discretize space in a similar way, but . . .
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The Spectral Method
The ECMWF Integrated Forecast System (IFS) uses a
spectral representation of the meteorological fields.

Each field is expanded in spherical harmonics, truncated at
a fixed total wavenumber N :

Q(λi, φj, t) =

N∑
n=0

n∑
m=−n

Qmn (t)Y mn (λi, φj)

The functions Y mn (λ, φ) are eigensolutions of the Laplacian:

∇2Y mn = −n(n + 1)Y mn .

The coefficients Qmn (t) depend only on time.

When the model equations are transformed to spectral space,
they become a set of ordinary differential equations for the
spectral coefficients Qmn .
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ENIAC Forecast
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The Meteorology Project

Project estblished by John von Neumann in
1946.

Objective of the project:
To study the problem of predicting the weather using a
digital electronic computer.

A Proposal for Funding listed three “possibilities”:

�New methods of weather prediction

�Rational basis for planning observations

�Step towards influencing the weather!
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The ENIAC
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The ENIAC

The ENIAC was the
first multi-purpose
programmable elec-
tronic digital com-
puter.
It had:

• 18,000 vacuum tubes

• 70,000 resistors

• 10,000 capacitors

• 6,000 switches

• Power: 140 kWatts
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Charney, et al., Tellus, 1950.
[
Absolute

Vorticity

]
=

[
Relative

Vorticity

]
+

[
Planetary

Vorticity

]
η = ζ + f .

• The atmosphere is treated as a single layer.
• The flow is assumed to be nondivergent.
• Absolute vorticity is conserved.

d(ζ + f )

dt
= 0.

This equation looks deceptively simple. But it is nonlinear:

∂

∂t
[∇2ψ] +

{
∂ψ

∂x

∂∇2ψ

∂y
− ∂ψ

∂y

∂∇2ψ

∂x

}
+ β

∂ψ

∂x
= 0 ,
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ENIAC Forecast for Jan 5, 1949
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NWP Operations

The Joint Numerical Weather Prediction
Unit was established on July 1, 1954:

�Air Weather Service of US Air Force

�The US Weather Bureau

�The Naval Weather Service.

Operational numerical weather forecasting began in
May, 1955, using a three-level quasi-geostrophic model.
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Interlude
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Temperature, Humidity and Climate Change
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Data Assimilation
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Data Assimilation
NWP: An initial/boundary value problem

• Given

– an estimate of the present state of the atmosphere
(initial conditions)

– appropriate surface and lateral boundary conditions

the model forecasts the evolution of the atmosphere.

• Operational NWP centers produce initial conditions from
a statistical combination of observations and short-range
forecasts. This is called data assimilation.
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Optimal Interpolation
The analysis problem is to find an
optimum atmospheric state, xa, given

• A background field xb (on a regular grid)

• A set of (irregularly spaced) p observations yo

The analysis is cast as background plus increment:

xa = xb + W[yo −H(xb)]

The analysis and the background are vectors of length n.

The weights are given by a matrix W of size (n× p).
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The Full Set of OI Equations
The result of the (least squares) optimization is:

xa = xb + W[yo −H(xb)]

W = BHT (R + HBHT )−1

Pa = (I−WH)B

All the covariance matrices are modelled using
simplifying assumptions.

Solution is a formidable computational task:
The matrices are huge. Many shortcuts are needed.
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Variational Assimilation
Another approach to objective analysis is the
variational assimilation technique.

Problem:
Find the analysis x that minimizes a cost function:

J(x) = 1
2

{
(x− xb)

TB−1(x− xb) + [yo −H(x)]TR−1[yo −H(x)]
}

the distance between x and the background xb,
plus the distance to the observations yo,:

Variational assimilation has been shown to yield
significant improvements in forecast accuracy.
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The gradient of J with respect to x is

∇J(x) = [B−1 + HTR−1H](x− xb)−HTR−1{yo −H(xb)}

To find a minimum of J, we set

∇J(x) = 0 .

The result is:

x = xb +
[
B−1 + HTR−1H

]−1
HTR−1{yo −H(xb)}

This is the (formal) solution of the 3-dimensional
variational (3D-Var) analysis problem.

The matrices are huge: perhaps 107 × 107.
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Minimization

In practical 3D-Var, we do not invert a huge matrix.

We find the minimum of J(x) by computing the cost function
and using an optimization technique.

The idea is to “proceed downhill” as fast as possible:

• Steepest Descent algorithm,

• Newton’s method,

• Conjugate Gradient algorithm.
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4D-Variational Assimilation
Four-dimensional variational assimilation (4D-Var)
is an extension of 3D-Var to allow for observations
distributed within a time interval (t0, tn).

The cost function includes terms for the distance to obser-
vations at the time of the observation.

J [x(t0)] =
1

2
[x(t0)− xb(t0)]

TB−1
0 [x(t0)− xb(t0)]

+
1

2

N∑
i=0

[
H(xi)− yoi

]T
R−1
i

[
H(xi)− yoi

]
The control variable is the initial state x (t0).
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Schematic diagram of four dimensional variational assimilation.
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Tangent Linear Model
The solution at time ti+1 is computed from the solution at
time ti by a (nonlinear) model:

xi+1 = Mi[xi] .

If we perturb the initial conditions, the solution is

xi+1 + δxi+1 = Mi [xi + δxi]

The linear tangent model is the (Jacobian) matrix:

[Li]j,k =
∂[M(xi)]j
∂(xi)k

Then, to first order,

δxi+1 = Li δxi .
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The Adjoint Model
The transpose of the linear tangent model is
called the adjoint model.

The Gradient of the cost function is:

∂J

∂x0
= −

N∑
i=0

[
LT0 LT1 · · · LTi−1

]
HT
i R−1

i di

Every iteration of the 4D-Var minimization requires the
computation of the gradient:

• Compute the observation increments di during a
forward integration

• Multiply them by HT
i R−1

i

• Integrate these weighted increments backward
to the initial time using the adjoint model.
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Atmospheric Normal Modes
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Oscillations of the Atmosphere
We treating the atmosphere as a thin single layer:

du

dt
− fv − uv tanφ

a
+ g

∂h

∂x
= 0

dv

dt
+ fu +

u2 tanφ

a
+ g

∂h

∂y
= 0

dh

dt
+ h

(
∂u

∂x
+
∂v

∂y
− v tanφ

a

)
= 0

These are the shallow water quations on the sphere.

We linearize about a motionless state with depth H:

h(λ, φ, t) = Y (φ) exp[i(mλ− σt)]

After some algebra we get an equation for Y (φ):

d

dµ

[(
1− µ2

σ2 − µ2

)
dY

dµ

]
+

{
1

σ2 − µ2

[
m

σ

σ2 + µ2

σ2 − µ2
− m2

1− µ2

]
+ ε

}
Y = 0 .

where µ = sinφ and ε = (2Ωa)2/gh.
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Laplace Tidal Equation
Again, the meridional structure is given by

d

dµ

[(
1− µ2

σ2 − µ2

)
dY

dµ

]
+

{
1

σ2 − µ2

[
m

σ

σ2 + µ2

σ2 − µ2
− m2

1− µ2

]
+ ε

}
Y = 0 .

where µ = sinφ and ε = (2Ωa)2/gh.

The normal modes are determined by the eigensolutions of
this second order o.d.e., the Laplace Tidal Equation.

Boundary conditions require Y to be regular at the poles.

The Laplace Tidal Equation is not in Sturm-Lioville form.
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Mathematical Difficulties
The standard form of the Sturm-Liouville equation is

d

dµ

(
p(µ)

dY

dµ

)
+ [q(µ) + λr(µ)]Y = 0

where p(µ) is regular and has no zeros within the domain.

For the Sturm-Liouville Equation:
1. The equation is self-adjoint and the eigenvalues λ are real.

2. The eigenfunctions for different λ are orthogonal.

3. The eigenfunctions form a complete set.

4. There is a denumerable infinity of non-negative eigenval-
ues with a single limit point at +∞.

5. The zeros of the eigenfunctions behave according to the
Sturmian oscillation theorems.
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For the LTE, p(µ) = (1−µ2)/(σ2−µ2) blows up at the ‘critical
latutudes’ where µ = ±σ, and the equation is singular.

Since the LTE cannot be written in standard Sturm-Liouville
form, the five properties may not hold.

It has been shown that the eigenvalues εn of the LTE are
real and the eigenfunctions form a complete, orthogonal set.

Fourth and fifth properties do not hold.

For |σ| < 1 there is a double infinity of eigenvalues, with
limit points at both +∞ and −∞.

The zeros of the eigenfunctions do not behave in a simple
manner like for a regular Sturm-Liouville problem.
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Eigenfrequencies σ of the LTE.
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Atmospheric Predictability
and

Ensemble Forecasting
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Progress in numerical weather prediction over the
past fifty years has been quite dramatic.

Forecast skill continues to increase . . .
by one day per decade.

However, there is a limit . . .
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Chaos in Atmospheric Flow

Edward Lorenz (b. 1917)

In a paper published in

1963, entitled Deterministic

Nonperiodic Flow, Edward

Lorenz showed that the solu-

tions of the system

ẋ = −σx + σy
ẏ = −xz + rx
ż = +xy − bz

are highly sensitive to the ini-
tial conditions.
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Identical Twin Experiment
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Ensemble Forecasting
In recognition of the chaotic nature of the atmosphere, focus
has now shifted to predicting the probability of alternative
weather events rather than a single outcome.

The mechanism is the Ensemble Prediction System (EPS)
and the world leader in this area is the European Centre for
Medium-range Weather Forecasts (ECMWF).

62



Ensemble remains compact Ensemble spreads out
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Singular Vectors

The linear tangent model Li transforms a perturbation at
time ti to a perturbation at time ti+1:

δx(ti+1) = Liδx(ti)

Perturbation growth is measured by the norm:

||δx(ti+1)||2 = ||Liδx(ti)||2 = 〈Lδx,Lδx〉 = 〈δx,LTLδx〉 .

This depends on the eigenvalues of LTL, the singular values.

The singular vector corresponding to the maximum singular
value gives the component that grows fastest.
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EPS: Ensemble Prediction System

We calculate the 25 largest singular values,
and the corresponding 25 singular vectors.

Fifty perturbed initial states are constructed
by adding and subtracting from the analysis.

This gives us fifty-one initial states.

Fifty-one forecasts are done, starting from these.
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Ensemble of fifty-one 42-hour forecasts.

Valid time: 0600 UTC, 26th December, 1999
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Discretizing the Sphere
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Regular Latitude-Longitude Grid
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Conformal Stretched Grid
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Triangulated Icosahedral Grid
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Fibonacci Grid
Inspired by Sun-flowers and Pineapples
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The ultimate grid remains elusive.

“Ultimate” depends on the application.
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The End

Typesetting Software: TEX, Textures, LATEX, hyperref, texpower, Adobe Acrobat 4.05
Graphics Software: Adobe Illustrator 9.0.2
LATEX Slide Macro Packages: Wendy McKay, Ross Moore


	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

