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Increase in Forecasting Skill
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Relevant Mathematical Areas

B Partial Differential Equations
B Numerical Analysis

B Linear Algebra

B Variational Methods

B Dynamical Systems

B Geometry of the Sphere

Something for everyone!







Galileo Galilei (1564-1642)

Galileo formulated the basic
law of falling bodies, which he
verified by careful measure-
ments.

He constructed a telescope,
with which he studied lu-
nar craters, and discovered
four moons revolving around
Jupiter.

Galileo i1s credited with the in-
vention of the Thermometer.

Thus began quantitative measurements of the atmosphere.



Evangelista Torricelli

Evangelista  Torricelli
(1608-1647), a student

of (alileo, devised
the first accurate
barometer.

Torricelli’s Theorem:

v =\/2gh

Torricelli inventing the barometer \\y



Newton's Law of Motion

The rate of change of momentum of a body is equal to the
sum of the forces acting on the body.

If F is the total applied force, Newton’s Second Law gives

a differential equation:
dp

=F.
dt

The acceleration a is the rate of change of velocity, that is,
a=dV/dt. If the mass m is constant, we have

F =ma.

Force - Mass x Acceleration.



Euler's Equations for Fluid Flow

Leonhard Euler

e Born in Basel in 1707.
e Died 1783 in St Petersburg.

e Formulated the equations
for incompressible, inviscid

fluid flow:

oV

—+ V. -VV + Vp g.

ot 0
V-V=0

Partial differential equations.



Jean Le Rond d'Alembert

A body moving at constant speed through a gas or a fluid
does not experience any resistance (D’Alembert 1752).



George G Stokes, 1819-1903

George Gabriel Stokes, founder of modern hydrodynamics.



ASIDE: Stokes' Theorem

%V-dl—/ V XV - -nda.
r 5

Stokes’ Theorem was actually discovered by Kelvin in 1854.
It is of central importance in fluid dynamics.

It leads on to Bjerknes’ Circulation Theorem:

//V X Vp-da = — @,
> rp

which generallzed Kelvin’s Circulation Theorem to baro-
clinic fluids (p varying independently of p), and ushered in
the study of Geophysical Fluid Dynamics.



Resolution of d'Alembert’'s Paradox

- e = o e

Fig. 9.1 Flow past a circular cylinder for (a) & ypotheibdl fluid with sers viscesity, (b) a real fluid
with very small viscosity i (from van Dyke 1982).
The minutest amount of viscosity has a profound
qualitative impact on the character of the solution.
The Navier-Stokes equations incorporate the effect of
viscosity.



The Navier-Stokes Equations

Euler’s Equations:

oV
—+ V. .VV + Vp g .
ot 0

The Navier-Stokes Equations

OV
=tV VV+pr—VV2V—I—g*.

Motion on the rotating Earth:

OV
=tV VV+QQXV+pr—VV2V+g.
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Navier-Stokes Equation

Waves follow our boat as we meander
across the lake, and turbulent air
currents follow our flight in a modern
jet. Mathematicians and physicists
believe that an explanation for and the
prediction of both the breeze and the
turbulence can be found through an
understanding of solutions to the
Mavier-Stokes equations. Although these
equations were written down in the 19th
Century, our understanding of them
remains minimal. The challenge is to
make substantial progress toward a
rathematical theory which will unlock
the secrets hidden in the Navier-Stokes
equations.
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The Primitive Equations

t 1
du_ (eru an¢)v+—@+Fx:O

dt a pOx
dv utan ¢ 10p
- "XV, =0
dt+(f+ - >u+p6y+ 7
p= Rpl
dp
et 24 — 0
8z+g'0
dT Q)
— — 1TV -V=—=
-+ = IV Cp
dp
“F .oV —
8t+v p
%L;U +V - pyV = [Sources — Sinks|

DDDDDD

Seven equations; seven variables (u,v,w,p, T, p, pu)- v



Scientific Weather Forecasting in a Nut-Shell

e The atmosphere is a physical system
e Its behaviour is governed by the laws of physics

e These laws are expressed quantitatively in the form of
mathematical equations

e Using observations, we can specity the atmospheric state
at a given initial time: “Today’s Weather”

e Using the equations, we can calculate how this state will
change over time: “Tomorrow’s Weather”

e The equations are very complicated (non-linear) and a
powerful computer is required to do the calculations

e The accuracy decreases as the range increases; there is
an inherent limit of predictibility.



Richardson's Forecast




Lewis Fry Richardson, 1881-1953.

i ¢ During WWI, Richardson
''''' computed by hand the
pressure change at a
single point.

L S

It took him two years !

His ‘forecast’ was a
catastrophic failure:

X Ap = 145 hPa in 6 hrs

But Richardson’s method was scientifically sound.



Tendency of a Noisy Signal
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Evolution of surface pressure before and after NNMI.
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Initialization of Richardson's Forecast

Richardson’s Forecast has been repeated on a computer.

The atmospheric observations for 20 May, 1910, were
recovered from original sources.

B ORIGINAL: s — 41451Pa/6h
B INITIALIZED: o — —0.9LPa/6h

Observations: The barometer was steady!



o o g =

“Richardson’s Forecast Factory

o 2

(©Frangois Schuiten

64,000 Computers: The first Massively Parallel Processor



The Finite Difference Scheme

Let () be governed by an equation

The time interval under consideration is sliced into a finite
number of discrete time steps {0, At,2At,... .nAt,... }.

The time derivitive is approximated by a finite difference:

dQ _Q(t+At) — Q(t — At)
dt N

Thus, a problem in analysis becomes a problem in algebra.



Reversing History

Differential calculus depends upon justifying the limiting
process At — 0.

In approximating a differential equation, we reverse the pro-
cedure, and replace derivatives by ratios of increments.

We thus ¢ ...return to the manner in which they did
things before the calculus was invented ...” (Richardson)



Stepping Forward

The time derivative in

dQ)
SO
is now approximated by a centered difference
Qn—i—l . Qn—l _
2At ’

Then
QnJrl _ Qn—l + 2At Fn .

This process of stepping forward is repeated a large number
of times, until the desired forecast range is reached.

We can discretize space in a similar way, but ...



The Spectral Method

The ECMWEF Integrated Forecast System (IFS) uses a
spectral representation of the meteorological fields.

Each field is expanded in spherical harmonics, truncated at
a fixed total Wavenumber N:

Zaqb]v Y S‘ Qn AZaqb])

n=0m=—n

The functions Y,"()\, ¢) are eigensolutions of the Laplacian:

VY = —n(n+1)Y,™.

The coefficients )'(t) depend only on time.

When the model equations are transformed to spectral space,
they become a set of ordinary differential equations for the
spectral coefficients Q)".



ENIAC Forecast



The Meteorology Project

Project estblished by John von Neumann in
1946.

Objective of the project:

To study the problem of predicting the weather using a
digital electronic computer.

A Proposal for Funding listed three ‘“possibilities”:

B New methods of weather prediction
B Rational basis for planning observations

B Step towards influencing the weather!



The ENIAC

.




The ENIAC

The ENIAC was the

first multi-purpose
programmable elec-
tronic digital com-
puter.
It had:

e 18,000 vacuum tubes
e 70,000 resistors

e 10,000 capacitors

e 6,000 switches

e Power: 140 kWatts



Charney, et al., Tellus, 1950.

[Absolute] B [Relative] N [Planetary]

Vorticity =6+

Vorticity Vorticity

e The atmosphere is treated as a single layer.
e The flow is assumed to be nondivergent.
e Absolute vorticity is conserved.

d(¢ + f)
dt

This equation looks deceptively simple. But it is nonlinear:

0 9 OYOV4p  dYIVAY Oy
E[V‘”H{ax oy Oy o0z }*5%

= 0.

0,
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NWP Operations

The Joint Numerical Weather Prediction
Unit was established on July 1, 1954:

B Air Weather Service of US Air Force
B The US Weather Bureau
B TThe Naval Weather Service.

Operational numerical weather forecasting began in
May, 1955, using a three-level quasi-geostrophic model.



Interlude



Observations of vapor pressure as a function of temperature

3

il
(=]

Vapor pressure (mb)

-16°C -12°C -8°C -4°C 0°C 4°C @8°C 12°C 16°C 20°C 24°C 28°C
Temperature

0 10 20 30 40 50 60 70 80 90 100

e R Relative humidity (percent) Fig. 4-3, p. 87

Temperature, Humidity and Climate Change



Data Assimilation



Data Assimilation

NWP: An initial/boundary value problem

e (Given

—an estimate of the present state of the atmosphere
(initial conditions)
— appropriate surface and lateral boundary conditions

the model forecasts the evolution of the atmosphere.

e Operational NWP centers produce initial conditions from
a statistical combination of observations and short-range
forecasts. This is called data assimilation.



Geo-stationary Polar-orbiting satellites

ERS-2 AU .
382,299  § satellites

motion
vector
SATOB SATEM

}94,935




ECMWF Data Coverage - SYNOP/SHIP
28/FEB/1999; 00 UTC © i svor
Total number of obs = 12688 " ™"




ECMWF Data Coverage - TOVS (120km)
28/FEB/1999; 00 UTC
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Optimal Interpolation

The analysis problem is to find an
optimum atmospheric state, x,, given

e A background field x; (on a regular grid)

e A set of (irregularly spaced) p observations y,

The analysis is cast as background plus increment:

Xq = Xp + Wlyo — H(xp)]

The analysis and the background are vectors of length n.

The weights are given by a matrix W of size (n x p).




The Full Set of Ol Equations

The result of the (least squares) optimization is:
x, = Xp+ Wy, — H(xy),
W =BH' (R + HBH')™!
P,=(I1- WH)B

All the covariance matrices are modelled using
simplifying assumptions.

Solution is a formidable computational task:
The matrices are huge. Many shortcuts are needed.



Variational Assimilation

Another approach to objective analysis is the
variational assimilation technique.

Problem:
Find the analysis x that minimizes a cost function:

J(x) = 5 {(x = x) "B (x = %) + [yo = Hx)|TR 'y, — H(x)]}
the distance between x and the background x;,

plus the distance to the observations y, :

Variational assimilation has been shown to yield
significant improvements in forecast accuracy.



The gradient of J with respect to x is
VJ(x)=B '+ H R H|(x — x;) - H Ry, — H(xp)}

To find a minimum of J, we set

VJ(x)=0.

The result is:

X = Xp + [B_l + HTR_1H} _1HTR_1{YO — H(xp)}

This is the (formal) solution of the 3-dimensional
variational (3D-Var) analysis problem.

The matrices are huge: perhaps 10 x 10'.



Minimization

In practical 3D-Var, we do not invert a huge matrix.

We find the minimum of J(x) by computing the cost function
and using an optimization technique.

The idea is to “proceed downhill” as fast as possible:

o Steepest Descent algorithm,
o Newton’s method,

o Conjugate Gradient algorithm.



4D-Variational Assimilation

Four-dimensional variational assimilation (4D-Var)
1s an extension of 3D-Var to allow for observations
distributed within a time interval (¢, t,).

The cost function includes terms for the distance to obser-
vations at the time of the observation.

Thlto)] = lx(to) — x"(t0)] "By "px(to) — x"(to)]

N
IS [Hx) — v TR [Hix) — ¥
1=0

The control variable is the initial state x ().



Observations

Model
variable

Schematic diagram of four dimensional variational assimilation.



Tangent Linear Model

The solution at time ¢;,; is computed from the solution at
time ¢; by a (nonlinear) model:

X;+1 = My[x] .
If we perturb the initial conditions, the solution is
Xi+1+ 0Xi1 = M; [x; + 0]

The linear tangent model is the (Jacobian) matrix:
L, - 0| M(x;)];
) O,

Then, to first order,

5Xi+1 — Lz 5Xz’ :



The Adjoint Model

The transpose of the linear tangent model is
called the adjoint model.

The Gradient of the cost function is:

TT T'p—1

Every iteration of the 4D-Var minimization requires the
computation of the gradient:

e Compute the observation increments d; during a
forward integration

e Multiply them by HZ-TR;1

e Integrate these weighted increments backward
to the initial time using the adjoint model.



Atmospheric Normal Modes



Oscillations of the Atmosphere

We treating the atmosphere as a thin single layer:

du uvtang  Oh

_ _ — =0

dt Jv ;0 " &

dv u“tan¢  Oh

% -+ fu + 0 -+ ga—y =
dh Ou Ov wvtano
— +h — = 0
dt " (8:1: " Oy a )

These are the shallow water quations on the sphere.

We linearize about a motionless state with depth H:

h(A, d,t) = Y () expli(mA — at)]

After some algebra we get an equation for Y (¢):
d | (1-p2\dy 1 [mo?+ 2 2
— & + mo_wmo__m +epY =0.
du |\ 52— 2] 4y 2 — 2 |oe?— 2 1= 2

where 1 =sin¢ and e = (2Qa)?/gh.




Laplace Tidal Equation

Again, the meridional structure is given by

d | {1-u2\dy] 1 |mo?+ 12 2
= a n mo vk m L y g
du |\ 2= 2] du RoRRl (P S

where ;1 = sin¢ and e = (2Qa)?/gh.

The normal modes are determined by the eigensolutions of
this second order o.d.e., the Laplace Tidal Equation.

Boundary conditions require Y to be regular at the poles.

The Laplace Tidal Equation is not in Sturm-Lioville form.



Mathematical Ditficulties

The standard form of the Sturm-Liouville equation is

o (P ) +la) 4 Ay =0

where p(u) is regular and has no zeros within the domain.

For the Sturm-Liouville Equation:

1. The equation is self-adjoint and the eigenvalues \ are real.
2. The eigenfunctions for different \ are orthogonal.

3. The eigenfunctions form a complete set.
4

. There is a denumerable infinity of non-negative eigenval-
ues with a single limit point at +oo.

5. The zeros of the eigenfunctions behave according to the
Sturmian oscillation theorems.



For the LTE, p(1) = (1 —u?)/(0? — 11?) blows up at the ‘critical
latutudes’ where 1 = +0, and the equation is singular.

Since the LTE cannot be written in standard Sturm-Liouville
form, the five properties may not hold.

It has been shown that the eigenvalues ¢, of the LTE are
real and the eigenfunctions form a complete, orthogonal set.

Fourth and fifth properties do not hold.

For |0| < 1 there is a double infinity of eigenvalues, with
limit points at both +00 and —oo.

The zeros of the eigenfunctions do not behave in a simple
manner like for a regular Sturm-Liouville problem.



All Modes
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Atmospheric Predictability

and

Ensemble Forecasting



Progress in numerical weather prediction over

past fifty years has been quite dramatic.

4,
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Forecast

ECMWF FORECAST VERIFICATION 12UTC

500hPa GEOPOTENTIAL
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skill continues to increase ...

by one day per decade.

However, there is a limit ...

the



Chaos in Atmospheric Flow

Edward Lorenz (b. 1917)

In a paper published in
1963, entitled Deterministic
Nonperiodic Flow, Edward
Lorenz showed that the solu-

tions of the system

r = —0x+ oy
Yy=—xz+rx
z = +xy — bz

are highly sensitive to the ini-
tzal conditions.

o6 o0
ann
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ldentical Twin Experiment

RIMENT: x(t)
T




Ensemble Forecasting

In recognition of the chaotic nature of the atmosphere, focus
has now shifted to predicting the probability of alternative
weather events rather than a single outcome.

European Centre for Medium range Forecasls. Reading Headquarters.

The mechanism is the Ensemble Prediction System (EPS)
and the world leader in this area is the European Centre for
Medium-range Weather Forecasts (ECMWF).



Variation in Predictability

- Highly Predictable

Highly Unpredictable

Ensemble remains compact Ensemble spreads out



Singular Vectors

The linear tangent model L; transforms a perturbation at
time ¢; to a perturbation at time ¢;.;:

0x(ti+1) = L;jox(t;)

Perturbation growth is measured by the norm:

0% (ti11)|1* = | Ladx(t)||* = (Léx, Léx) = (6x, L' Lox)

This depends on the eigenvalues of L'L, the singular values.

The singular vector corresponding to the maximum singular
value gives the component that grows fastest.

DDDDDD



EPS: Ensemble Prediction System

We calculate the 25 largest singular values,
and the corresponding 25 singular vectors.

Fifty perturbed initial states are constructed
by adding and subtracting from the analysis.

This gives us fifty-one initial states.

Fifty-one forecasts are done, starting from these.




Ensambla forecast of the Franch / German storms (surface pressural
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Discretizing the Sphere




Regular Latitude-Longitude Grid



Distributing points on the sphere

Convex hull, Yoronoi cells
and Delaunay triangulation

Covering and packing -
with spherical caps

. Interpolatory cubature, cubature
i weights and determinants




Conformal Stretched Grid



The Cubed Sphere

Aungle Dernatvon foowm M day,
Cabed-Sphere 1H1x181x0
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Triangulated Icosahedral Grid



Stretched Icosahedral Grid




To make a stretched grid

— Gather the grid points in the north pole
region (left figure)

— Rotate the grid system to the interested
region (right figure)




Penta-Hexagonal Grid




Yin-Yang grid

Yang (N) zone Yin {(E) zone Yin-Yang composition




Rectangles, minimal overlap Overlaps trimmed to median
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Figure 2. A spherical Fibonacci grid. at resolution N = 1000 (2001 grid points). As in Fig. 1. the spiral structure
is highlighted by marking every 34th and 35th grid point.

Fibonacci Grid

Inspired by Sun-flowers and Pineapples




The ultimate grid remains elusive.

“Ultimate”

depends on the application.
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The End

Typesetting Software: TEX, Textures, INTEX, hyperref, texpower, Adobe Acrobat 4.05
Graphics Software: Adobe Illustrator 9.0.2
IATEX Slide Macro Packages: Wendy McKay, Ross Moore




	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

