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Boxes & Loops
The familiar phase portrait of a simple pendulum shows
how a separatrix divides the phase plane into two regions:

The two regions correspond to libration and rotation.

In many dynamical systems there is a similar separation
of the phase plane into orbits known as boxes and loops.
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Boxes & Loops

In many dynamical systems there is a similar separation
Into two types of orbits, known as boxes and loops.

This is seen in elliptical billiards, astrodynamics,
rigid body mechanics and many other systems.

We will discuss this phenomenon and
illustrate it with a variety of examples.
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Meeting Darryl: My Good Fortune

I Met Darryl at INI (AOD Programme) in 1996.
I Darryl and family in Dublin, July 1999.

• We worked together on Swinging Spring.
I I Visited Los Alamos in Sep/Oct 2000.

• Darryl found the 3-wave Equations.
I IMA Workshop, Minnesota, February 2002.
I Rock-n-roller. Innumerable emails.
I Recently: Numerous visits to Imperial College.
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Quaternion Plaque on Hamilton’s Bridge
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Hamilton’s Bridge in Dublin

Figure : Darryl and Justine in Dublin, 1999?
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Sand Sculpture of Hamilton’s Bridge

Figure : Hamilton’s Graffito: i2 = j2 = k2 = ijk = �1.
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The Swinging Spring
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Two distinct oscillatory modes
with distinct restoring forces:

• Elastic or springy modes
• Pendular or swingy modes

Take a peek at the Java Applet
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Two distinct oscillatory modes
with distinct restoring forces:

• Elastic or springy modes
• Pendular or swingy modes

Take a peek at the Java Applet
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In a paper in 1981, Breitenberger and Mueller
made the following comment:

“This simple system looks like
a toy at best, but its behaviour

is astonishingly complex, with many
facets of more than academic lustre.”

I hope to convince you of the validity of this remark.

Intro SS PV RnR SHO Chaplygin Routh Quaternions Billiards Squ/Squ Fin



The Exact Equations of Motion
In Cartesian coordinates the Lagrangian is

L =T � V = 1
2 m
⇣

ẋ2 + ẏ2 + Ż 2
⌘

| {z }
K .E

� 1
2 k(r � `0)2
| {z }

E.P.E

�mgZ| {z }
G.P.E

The equations of motion are (with !2
Z ⌘ k/m):

ẍ = �!2
Z

✓
r � `0

r

◆
x

ÿ = �!2
Z

✓
r � `0

r

◆
y

Z̈ = �!2
Z

✓
r � `0

r

◆
Z � g

Two constants, energy and angular momentum:

E = T + V h = xẏ � yẋ .

The system is not integrable (two invariants, three D.O.F.).
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The Canonical Equations
We consider the case of planar motion. The canonical
equations of motion (in polar coordinates) are:

✓̇ = p✓/mr 2

ṗ✓ = �mgr sin ✓
ṙ = pr/m

ṗr = p2
✓/mr 3 � k(r � `0) + mg cos ✓

These equations may also be written symbolically as

Ẋ + LX + N(X) = 0

State vector X is in 4-dimensional phase space:

X = (✓, p✓, r , pr )
T .
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Linear Normal Modes
Suppose that amplitude of motion is small:

d
dt

0

BB@

✓
p✓

r 0

pr

1

CCA =

0

BB@

0 1/m`2 0 0
�mg` 0 0 0

0 0 0 1/m
0 0 �k 0

1

CCA

0

BB@

✓
p✓

r 0

pr

1

CCA

The matrix is block-diagonal:

X =

✓
Y
Z

◆
: Y =

✓
✓
p✓

◆
, Z =

✓
r 0

pr .

◆

Linear dynamics evolve independently:

Ẏ =

✓
0 1/m`2

�mg` 0

◆
Y , Ż =

✓
0 1/m
�k 0

◆
Z .

SLOW FAST
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Perturbation Theory

Ratio of rotational and elastic frequencies:

✏ ⌘
✓
!R

!Z

◆
=

r
mg
k`

.

For ✏ = 0, there is no coupling between the modes.

For ✏⌧ 1 the coupling is weak. We can apply
classical Hamiltonian perturbation theory.
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Regular and Chaotic Motion

We wish to discuss the phenomenon of Resonance
for the spring, and its Pulsation and Precession.

Resonance occurs for

✏ ⇡ 1
2
.

This is far from the quasi-integrable case (small ✏).

However, for small amplitudes, the motion is also
quasi-integrable. We look at two numerical solutions,
one with small amplitude, one with large.
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Horizontal plan: Low energy case
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Horizontal plan: High energy case
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The Resonant Case

The Lagrangian (to cubic order) is

L = 1
2

�
ẋ2 + ẏ2 + ż2�� 1

2

�
!2

R(x
2 + y2) + !2

Z z2�+ 1
2�(x

2 + y2)z ,

We study the resonant case:

!Z = 2!R .

The equations of motion are

ẍ + !2
Rx = �xz

ÿ + !2
Ry = �yz

ẍ + !2
Z x = 1

2�(x
2 + y2) .

The system is not integrable.
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Averaged Lagrangian technique

We seek a solution of the form:

x = <[a(t) exp(i!Rt)] ,
y = <[b(t) exp(i!Rt)] ,
z = <[c(t) exp(2i!Rt)]

The coefficients a(t), b(t) and c(t) vary slowly.

The Lagrangian is averaged over fast time:

hLi =
⇣!R

2

⌘h
=(aȧ⇤ + bḃ⇤ + 2cċ⇤) + <(a2 + b2)c⇤)

i

where  = �/(4!R) (we absorb  in t).
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The Euler-Lagrange Equations

We derive the Euler-Lagrange equations
resulting from this averaged Lagrangian:

i ȧ = a⇤c ,

i ḃ = b⇤c ,

i ċ = 1
4(a

2 + b2)

We transform to new dependent variables:

A = 1
2(a + ib) , B = 1

2(a � ib) , C = c .
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The Three-wave Equations

The equations for the transformed amplitudes are:

i Ȧ = B⇤C
iḂ = CA⇤

iĊ = AB
These are the three-wave equations.
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Invariants

The three-wave equations conserve

H = 1
2(ABC⇤ + A⇤B⇤C)

N = |A|2 + |B|2 + 2|C|2

J = |A|2 � |B|2 .

The three-wave equations are completely integrable.
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Manley-Rowe Relations

Physically significant combinations of N and J:

N+ ⌘ 1
2(N + J) = |A|2 + |C|2 ,

N� ⌘ 1
2(N � J) = |B|2 + |C|2 .

These are the Manley-Rowe relations.

The quantities H, N+ and N� provide three
independent constants of the motion.

Constant N+ and constant N� correspond to
orthogonal circular cylinders in phase-space.
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Surfaces of Revolution

Motion is on the intersection with plane of constant X .
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Darryl’s Books on Geometric Mechanics
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Ubiquity of the Three-Wave Equations

I Modulation equations for wave interactions in
fluids and plasmas.

I Three-wave equations govern envelop dynamics
of light waves in an inhomogeneous material; and
phonons in solids.

I Maxwell-Schrödinger envelop equations for
radiation in a two-level resonant medium in a
microwave cavity.

I Euler’s equations for a freely rotating rigid body
(when H = 0).
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Analytical Solution of the 3WE

We can derive complete analytical expressions
for the amplitudes and phases.

The amplitudes are expressed as elliptic functions.
The phases are expressed as elliptic integrals.

The complete details are given in:

Lynch, Peter, and Conor Houghton, 2004:
Pulsation and Precession of the

Resonant Swinging Spring.
Physica D, 190,1-2, 38-62

Intro SS PV RnR SHO Chaplygin Routh Quaternions Billiards Squ/Squ Fin



Original Reference

First comprehensive analysis of elastic pendulum:

“Oscillations of an Elastic Pendulum as
an Example of the Oscillations of Two

Parametrically Coupled Linear Systems”

Vitt and Gorelik (1933).

Inspired by analogy with Fermi resonance of CO2.

Translation of this paper available as

Historical Note #3 (1999), Met Éireann, Dublin.
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Vibrations of CO2 Molecule
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1388
667 ⇡ 2
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Monodromy in Quantum Systems

It is 80 years since the work of Vitt and Gorelik.

“ Remarkably, the swinging spring still has
something interesting to offer to the quantum
study of the Fermi resonance.”

The CO2 molecule as a quantum realization of
the 1:1:2 resonant swing–spring with monodromy

Richard Cushman, Holger Dullin, Andrea Giacobbe, Darryl Holm,
Marc Joyeux, Peter Lynch, Dmitrií Sadovskií, and Boris Zhilinskií

Published in Phys. Rev. Lett. (2004)

“It is now tempting to think of experimental
quantum dynamical manifestations of monodromy.”
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Springs and Triads

In a Nutshell

A mathematical equivalence with

The Swinging Spring
sheds light on the dynamics of

Resonant Rossby Waves
in the atmosphere.



Potential Vorticity Conservation
⇣ = Relative Vorticity,
f = Planetary Vorticity,
h = Fluid Depth.

From the Shallow Water Equations, we derive the principle
of conservation of potential vorticity:

d
dt

✓
⇣ + f

h

◆
= 0 .

Under the assumptions of quasi-geostrophic theory,
the dynamics reduce to an equation for  alone:

@

@t
[r2 � F ] +

⇢
@ 

@x
@r2 

@y
� @ 

@y
@r2 

@x

�
+ �

@ 

@x
= 0

This is the barotropic QG potential vorticity equation
(BQGPVE) aka the Charney-Hasegawa-Mima Equation.
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Rossby Waves
Wave-like solutions of the vorticity equation:

 = A cos(kx + `y � �t)

satisfies the equation provided

� = � k�
k2 + `2 + F

.

This is the celebrated Rossby wave formula

Nonlinear term vanishes for single Rossby wave:
A pure Rossby wave is solution of nonlinear equation.

When there is more than one wave present, this is no
longer true: the components interact with each other
through the nonlinear terms.
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Resonant Rossby Wave Triads

Case of special interest: Two wave components
produce a third such that its interaction with each
generates the other.

By a multiple time-scale analysis we derive the
modulation equations for the wave amplitudes:

i Ȧ = B⇤C ,

i Ḃ = CA⇤ ,

iĊ = AB ,

[Canonical form of the three-wave equations].
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The Spring Equations
and the

Triad Equations are
are

Mathematically Identical!
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Numerical Example of Resonance

Method of numerical solution of the PDE:

@

@t
[r2 � F ] +

⇢
@ 

@x
@r2 

@y
� @ 

@y
@r2 

@x

�
+ �

@ 

@x
= 0

• Potential vorticity, q = [r2 � F ] is
stepped forward (with leap-frog method)

•  is obtained by solving a Helmholtz equation
with periodic boundary conditions

• The Jacobian term is discretized following Arakawa
(to conserve energy and enstrophy)

• Amplitude is chosen very small.
Therefore, interaction time is very long.
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Components of a resonant Rossby wave triad
All fields are scaled to have unit amplitude.
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Variation with time of the amplitudes of
three components of the stream function.
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Stream function at three times during an
integration of duration T = 4800 days.
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Precession of Triads

• Analogies: Interesting — Equivalences: Useful!

Since the same equations apply to both the spring and
triad systems, the stepwise precession of the spring must
have a counterpart for triad interactions.

In terms of the variables of the three-wave equations, the
semi-axis major and azimuthal angle ✓ are

A
maj

= |A1|+ |A2| , ✓ =
1
2
('1 � '2) .

Initial conditions chosen as for the spring (by means of the
transformation relations).

Initial field scaled to ensure that small
amplitude approximation is accurate.
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Polar plot of A
maj

versus ✓ for resonant triad.
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Horizontal projection of spring solution, y vs. x .
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Polar plots of A
maj

versus ✓.
(These are the quantities for the Triad, which
correspond to the horizontal projection of the
swinging spring.)

• The Star-like pattern is immediately evident.
• Precession angle again about 30�.

This is remarkable, and illustrates the value of the
equivalence:

Phase precession for Rossby wave
triads had not been noted before.

Resonant interactions are important for energy
distribution in the atmosphere. They play a central
rôle in Wave Turbulence Theory.
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Candle-holders from Copenhagen

Fireballs (designer: Pernille Vea)
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The RnR: a Topless Bowling-ball
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Recession

See animated gif of RnR on website.



Globular Cluster: Messier 54, NGC 6715
Class III Extragalactic Globular Cluster.

Intro SS PV RnR SHO Chaplygin Routh Quaternions Billiards Squ/Squ Fin



Box and Loop Orbits: Globular Cluster

Two orbits in a logarithmic gravitational potential.
Left: a box orbit. Right: a loop orbit.

Galactic Dynamics. Binney and Tremaine (2008) [pg. 174]
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Box and Loop Orbits: Rock’n’roller

Trajectory of the Rock’n’roller in ✓–�-plane
(✓ radial, � azimuthal) with ✏ = 0.1.



Box and Loop Orbits: Perturbed SHO

Box and Loop orbits for the perturbed SHO.
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Box and Loop Orbits: Billiards

Box and Loop orbits on a billiard table.
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The RnR: Main Topics

I Two types of trajectories: boxes and loops.

I Simple model: Perturbed 2D harmonic oscillator.

I Small-amplitude motion of rock’n’roller.

I Equations of motion in quaternionic form.

I Recession is associated with box orbits.
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Motivation

One of the motivations for studying the Rock’n’roller is the hope of finding an
invariant of the motion in addition to the energy. This expectation arises from the
symmetry of the body.

For the general Chaplygin Sphere, there is a finite angle � between the principal
axis corresponding to I3 and the line joining the centres of gravity and symmetry.
For the Rock’n’roller, this angle is zero and the Lagrangian is independent of the
azimuthal angle �.

However, we have not found a second invariant and, considering the
non-holonomic nature of the problem, its existence remains an open question.
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The Perturbed Harmonic Oscillator

Unperturbed system: 2D SHO with equal frequencies:

L0 = 1
2(ẋ

2 + ẏ2)� 1
2!

2
0(x

2 + y2)

The perturbed system has Lagrangian:

L = L0 � �y2 � ✏r 4 ,

where � ⌧ !2
0 and ✏⌧ 1.

The �-term breaks the 1 : 1 resonance.

The ✏-term is a radially symmetric stiffening.
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To analyse the system, we assume a solution

x(t) = <{A(t) exp(i!0t)} y(t) = <{B(t) exp(i!0t)}

and average the Lagrangian over the fast motion.

We let A = |A| exp(i↵) and B = |B| exp(i�).

Defining W = |A|2 � |B|2 and � = ↵� �, we have

dW
d⌧

= �(1 � W 2) sin� cos�

d�
d⌧

= �W sin2 �� 1

where � = 2✏U/� is a non-dimensional parameter.
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Again,

dW
d⌧

= �(1 � W 2) sin� cos�

d�
d⌧

= �W sin2 �� 1

These are the canonical equations for the Hamiltonian

H = 1
2�(1 � W 2) sin2 �+ W .
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Phase portraits (W–� plane) for the perturbed SHO.
Left panel: � = 0.5. Right panel: � = 2.0.



Box and Loop Orbits: Perturbed SHO

Box and Loop orbits for the perturbed SHO.
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Sergey Alexeyevich Chaplygin



Sergey Alexeyevich Chaplygin

Sergey Alexeyevich Chaplygin (1869–1942) was a Russian physicist,
mathematician, and mechanical engineer. He is known for mathematical
formulas such as Chaplygin’s equation.

He graduated in 1890 from Moscow University, and later became a professor. He
taught mechanical engineering at Moscow’s Woman College in 1901, and applied
mathematics at Moscow School of Technology, 1903.

Chaplygin was elected to the Russian Academy of Sciences in 1924. The lunar
crater Chaplygin and town Chaplygin are named in his honor. His "Collected
Works" in four volumes were published in 1948.
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The Hierarchy of Spheres



Schematic Diagram of Chaplygin Sphere
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RnR: The Physical System

Consider a spherical rigid body with
an asymmetric mass distribution.

Specifically, we consider a loaded sphere.

The dynamics are essentially the same as for the
tippe-top, which has been studied extensively.

Unit radius and unit mass.

Centre of mass off-set a distance a from the centre.

Moments of inertia I1, I2 and I3, with I1 ⇡ I2 < I3.
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The Lagrangian
The Lagrangian of the system is easily written down:

L = 1
2(I1!

2
1 + I2!2

2 + I3!2
3)+

1
2(Ẋ

2 + Ẏ 2 + Ż 2)�ga(1� cos ✓)

The equations may then be written (in vector form):

⌃✓̇ = ! , K!̇ = P!

where the matrices ⌃ and K are known and

P! =

0

@
�(g + !2

1 + !2
2)as�+ (I2 � I3 � af )!2!3

(g + !2
1 + !2

2)as� + (I3 � I1 + af )!1!3
(I1 � I2)!1!2 + as(��!1 + �!2)!3

1

A

Note that neither K nor P! depends explicitly on �.
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Box and Loop Orbits: Rock’n’roller

Trajectory of the Rock’n’roller in ✓–�-plane
(✓ radial, � azimuthal) with ✏ = 0.1.
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The Routh Sphere: I1 = I2



Constants of Motion for Routh Sphere
In case I1 = I2, there are three degrees of freedom
and three constants of integration.

The kinetic energy is

K = 1
2 [u

2 + v2 + w2] + 1
2 [I1(!

2
1 + !2

2) + I3!2
3]

The potential energy is

V = mga(1 � cos ✓) .

Since there is no dissipation,

E = K + V = constant .
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Constants of Motion for Routh Sphere

Jellett’s constant is the scalar product:

CJ = L · r = I1s(�!1 + �!2) + I3f !3 = constant .

where s = sin ✓, f = cos ✓ � a, � = sin and � = cos .
[S O’Brien & J L Synge first gave this interpretation.]

Routh’s constant (difficult to interpret physically):

CR =

q
I3 + s2 + (I3/I1)f 2

�
!3 = constant .

Constant CR implies conservation of sign of !3 . . .
. . . but this does not automatically preclude recession!
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Edward J Routh John H Jellett

1831–1907 1817–1888



Edward J Routh

Edward John Routh (20 January 1831 to 7 June 1907), an English mathematician,
noted as the outstanding coach of students preparing for the Mathematical
Tripos examination of the University of Cambridge.

He also did much to systematize the mathematical theory of mechanics and
created several ideas critical to the development of modern control systems
theory.

In 1854, Routh graduated just above James Clerk Maxwell, as Senior Wrangler,
sharing the Smith’s prize with him. He coached over 600 pupils between 1855
and 1888, 27 of them making Senior Wrangler.

Known for: Routh-Hurwitz theorem, Routh stability criterion, Routh array,
Routhian, Routh’s theorem, Routh’s algorithm, Kirchhoff-Routh function.
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John H Jellett

J. H. Jellett was a native of Cashel, County Tipperary, the son of a clergyman. He
graduated from Trinity College with honors in mathematics in 1838, and was
elected to Fellowship in 1840. In 1847 he was appointed to the newly established
chair of Natural Philosophy (Applied Mathematics), which he held until 1870.

Jellett was a scholar of considerable eminence and his publications cover the
fields of pure and applied mathematics, notably the theory of friction and the
properties of optically active solutions, as well as sermons and lectures on
religious topics.

He was President of the Royal Irish Academy for five years from 1869, received
the Royal Society’s Medal in 1881 and an honorary degree from Oxford in 1887.

His politics were sufficiently liberal to make him an acceptable candidate to
Gladstone who appointed him Provost of Trinity College Dublin in April 1881. He
died in office on 19 February 1888.
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Integrability of Routh Sphere

Using Routh’s constant CR, we have !3 = !3(✓).

Then, using Jellett’s constant CJ , we have !2 = !2(✓).

Using the energy equation, we can now write:

✓̇2 = f (✓) .

For a given ✓, both !2 and !3 are fixed:
This confirms that recession is impossible.
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Invariants of the Rock’n’roller

The only known constant of motion is total energy E .

There remains a symmetry: the system is unchanged
under the transformation

� �! �+ ��

The spirit of Noether’s Theorem would indicate
another constant associated with this symmetry;

So far, we have not found a “missing constant”.
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Quaternionic Formulation
The Euler angles have a singularity when ✓ = 0
The angles � and  are not uniquely defined there.

We can obviate this problem by using
Euler’s symmetric parameters:

� = cos 1
2✓ cos 1

2(�+  ) ⇠ = sin 1
2✓ cos 1

2(��  )

⇣ = cos 1
2✓ sin 1

2(�+  ) ⌘ = sin 1
2✓ sin 1

2(��  )

These are the components of a unit quaternion

q = � + ⇠i + ⌘j + ⇣k

�2 + ⇠2 + ⌘2 + ⇣2 = 1
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William Rowan Hamilton (1805–1865)



Quaternion Equations
Euler’s symmetric parameters,

or
Euler-Rodrigues parameters:

� = cos 1
2✓ cos 1

2(�+  ) ⇠ = sin 1
2✓ cos 1

2(��  )

⇣ = cos 1
2✓ sin 1

2(�+  ) ⌘ = sin 1
2✓ sin 1

2(��  )

The components of angular velocity are

!1 = 2[�⇠̇ � ⇠�̇ + ⇣⌘̇ � ⌘⇣̇]

!2 = 2[�⌘̇ � ⌘�̇ + ⇠⇣̇ � ⇣⇠̇]

!3 = 2[�⇣̇ � ⇣�̇ + ⌘⇠̇ � ⇠⌘̇]
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Lagrangian and Hamiltonian
The quaternion equations arise from the Lagrangian

L = 1
2(k1µ̇2 + k2⌫̇2)� 1

2(k1⌦̃2
1µ

2 + k2⌦̃2
2⌫

2) + k1k2(µ⌫̇ � ⌫µ̇)

where (�, ⇣, ⇠, ⌘) ! (�, ⇣, µ, ⌫).

The generalized momenta are

pµ = k1(µ̇� k2⌫) and p⌫ = k2(⌫̇ + k2µ)

The Hamiltonian is

H = 1
2

 
p2
µ

k1
+

p2
⌫

k2

!
� [k1µp⌫ � k2⌫pµ]

+ 1
2 [k1(k1k2 + ⌦̃2

1)µ
2 + k2(k1k2 + ⌦̃2

2)⌫
2]



Constants of the Motion

The numerical value of the Hamiltonian (energy) is

Eµ+⌫ = 1
2(k1µ̇2 + k2⌫̇2) + 1

2(k1⌦̃2
1µ

2 + k2⌦̃2
2⌫

2)

An additional constant of the motion can be found:

K1 ⌘
⇣

�2µ̇+�2⌫
�1�2��2�1

⌘2
+
⇣

⌫̇��2�2µ
�1�1��2�2

⌘2
= µ2

1 ,

K2 ⌘
⇣

�1µ̇+�1⌫
�1�2��2�1

⌘2
+
⇣

⌫̇��1�1µ
�1�1��2�2

⌘2
= µ2

2 .

Numerical tests confirm that K1 and K2 are constant.
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Aspiration

To find an invariant of the motion of the Rock’n’roller
in addition to the energy.

This expectation arises from the symmetry of the body.

In view of the non-holonomic nature of the problem,
its existence remains an open question.

However, the box and loop orbits suggest
that a search would be worthwhile.

In elliptical billiards there is an “extra” invariant: p1 ⇥ p2.
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Kalejdoskop Matematyczny (1939)



Billiard Shot leading to a Loop Orbit



Billiard Shot leading to a Box Orbit



Box and Loop Orbits: Billiards

Box and Loop orbits on an elliptical billiard table.

Extra invariant: p1 ⇥ p2 is conserved.
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Billiards and Ballyards
Main idea:

Billiard Table with Soft Cushions =) Ballyard.

Playing surface no longer quite flat.

Figure : Potentials 2xN for N 2 {2, 4, 8, 16}.
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Back to Basics: 1 Dimension

A particle in a parabolic well z = 1
2z1x2 has Lagrangian

L = 1
2 ẋ2(1 + z2

1x2)� 1
2(gz1)x2

The Euler-Lagrange equations are

(1 + z2
1x2)ẍ + gz1x + z2

1xẋ2 = 0
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Back to Basics: 1 Dimension

Figure : Potentials x2 and x2/5.
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Back to Basics: 1 Dimension

Figure : Potentials x2 and x10.
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Back to Basics: 1 Dimension

To linearize, make z1 small but keep gz1 fixed:

ẍ + (gz1)x = 0 .

This is a geometric/gravimetric approximation.

We are flattening the table while turning up gravity.
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Moving to 2 Dimensions: Circular Table

A particle in a paraboloidal well with
axial symmetry, z = 1

2z1r 2 has Lagrangian

L = 1
2 [(1 + z2

1 r 2)ṙ 2 + r 2✓̇2]� 1
2(gz1)r 2

As before, we let z1 ! 0 with 1
2gz1 = 1.

Since ✓ is a cyclic variable, @L/@✓̇ = r 2✓̇ is constant.

My Gaffe: Eliminate ✓̇ from L using h = r 2✓̇.

Correct: Get E-L equation, then use h = r 2✓̇.
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Circular Ballyards

Since the restoring force is central,
the angular momentum is conserved.

The system is integrable.
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Potentials with Increasing Power

Figure : Potentials 2x2, 2x4, 2x8, and 2x16.
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Changing the Potential

Figure : N=2.
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Changing the Potential

Figure : N=4.

Intro SS PV RnR SHO Chaplygin Routh Quaternions Billiards Squ/Squ Fin



Changing the Potential

Figure : N=8.
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Changing the Potential

Figure : N=16.
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Changing the Potential

Figure : N=32.
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Changing the Potential

Figure : N=64.
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Elliptic Ballyards: N = 4

Left: Angular Momentum varies from �6 to +6.
Right: Angular Momentum varies from �4 to �10.

Additional Constant of Motion not found (yet!)
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Squircular Ballyard Potential

x4 + y4 = 1

Figure : Potential, V (x), N = 8. Left: VER-X. Right: HOR-X.
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Squircular Ballyard

Figure : N = 2. ICs = 1.
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Squircular Ballyard

Figure : N = 2. ICs = 2.
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Squircular Ballyard

Figure : N = 2. ICs = 3.

Intro SS PV RnR SHO Chaplygin Routh Quaternions Billiards Squ/Squ Fin



Squovular Ballyard
⇣x

a

⌘8
+
⇣y

b

⌘8
= 1

Figure : Aspect ratio 2 : 1.
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Conclusion

AIM:
To find an invariant of the motion of
the Rock’n’roller in addition to the energy.

This expectation arises from the symmetry of the body.

The box and loop orbits suggest
that a search would be worthwhile.

The investigation of elliptical billiards may be fruitful.

But the goal is not yet reached
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Conclusion

“I Still Haven’t Found What I’m Looking For”

Let’s hope for success by Darryl’s 75th Birthday.
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Thank You All

and

Happy Birthday, Darryl!
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