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The Idea of Filtering

A primitive filter model:

Good/Bad/Ugly =⇒ Filter −→ Good

Suppose the input consists of a low-frequency (LF) signal
contaminated by high-frequency (HF) noise. We use a low-
pass filter which rejects the noise.

Low Frequency

High Frequency
=⇒ Low-Pass Filter −→ Low

Frequency
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Some Applications of Digital Filters
• Telecommunications

– Digital Switching / Multiplexing / Touch-tone Dialing

• Audio Equipment

– Compact Disc Recording / Hi-Fi Reproduction

• Speech Processing

– Voice Recognition / Speech Synthesis

• Image Processing

– Image Enhancement / Data Compression

• Remote Sensing

– Doppler Radar / Sonar Signal Processing

• Geophysics

– Seismology / Initialization for NWP.
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Non-recursive Digital Filter
Consider a discrete time signal,{

· · · , x−2, x−1, x0, x1, x2, · · ·
}

For example, xn could be the value of surface pressure at
time n∆t at a specific location, say, Sapporo.

Nonrecursive Digital Filter:

A nonrecursive digital filter is defined by

yn =

+N∑
k=−N

hkxn−k

The inputs are
{
xn

}
. The outputs are

{
yn

}
.

The outputs are weighted sums of the inputs.
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Application to Initialization
�Model integrated forward for N steps:

yFOR =
1

2
h0x0 +

N∑
n=1

h−nxn

�N-step ‘hindcast’ is made:

yBAK =
1

2
h0x0 +

−N∑
n=−1

h−nxn

�The two sums are combined:

y0 = yFOR + yBAK
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Digital Filters as Convolutions
Consider the nonrecursive digital filter

yn =

+N∑
k=−N

hkxn−k .

The indices of x and a run in opposite directions:

h−N , · · · , h−1, h0, h1, · · · , hN

xn+N , · · · , xn+1, xn, xn−1, · · · , xn−N

so that the sum is in the form of a finite convolution:

yn =
{
hn

}
?

{
xn

}
.

By a careful choice of the coefficients hn, we can design a
filter with the desired selection properties.
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Frequency Response of FIR Filter
Let xn be the input and yn the output.
Assume xn = exp(inθ) and yn = H(θ) exp(inθ).

The transfer function H(θ) is then

H(θ) =

N∑
k=−N

hke
−ikθ .

This gives H once the coefficients hk have been specified.

However, what is really required is the opposite: to derive
coefficients which will yield the desired response.

This inverse problem has no unique solution, and numerous
techniques have been developed.
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Design of Nonrecursive Filters

We consider the simplest possible design technique, using a
truncated Fourier series modified by a window function.

Consider a sequence{
· · · , x−2, x−1, x0, x1, x2, · · ·

}
with low and high frequency components.

To filter out the high frequencies one may proceed Accord-
ing to the following Three-step method:

1. Calculate the Fourier transform X(θ) of xn;

2. Set the coefficients of the high frequencies to zero;

3. Calculate the inverse transform.
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Three-Step Procedure
1. Calculate the Fourier transform X(θ) of xn;

2. Set the coefficients of the high frequencies to zero;

3. Calculate the inverse transform.

Step [1] is a forward Fourier transform:

X(θ) =

∞∑
n=−∞

xne−inθ,

where θ = ω∆t is the digital frequency. X(θ) is 2π-periodic.

Step [2] may be performed by multiplying X(θ) by an ap-
propriate weighting function H(θ).

Step [3] is an inverse Fourier transform:
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Filtering as Convolution

Step [3] is an inverse Fourier transform. The product H(θ) ·
F (θ) is the transform of the convolution of

{
hn

}
with

{
xn

}
:

yn = (h ∗ x)n =

∞∑
k=−∞

hkxn−k.

In practice, we must truncate the sum:

yn =

N∑
k=−N

hkxn−k.

The finite approximation to the convolution is formally iden-
tical to a nonrecursive digital filter.
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Filter Coefficients
The function H(θ) is called the

• System Function

• Transfer Function

• Response Function.

Typically, H(θ) is a step function:

H(θ) = 1, |θ| ≤ |θc| ;
H(θ) = 0, |θ| > |θc| .

hn =
1

2π

∫ π

−π
H(θ)einθdθ ; H(θ) =

∞∑
n=−∞

hne−inθ

hn =
sin nθc

nπ
.
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Windowing
Truncation gives rise to Gibbs oscillations.

The response of the filter is improved if hn is multiplied by
the Lanczos window

wn =
sin

(
nπ/(N + 1)

)
nπ/(N + 1)

.

ĥn = wn

(
sin(nθc)

nπ

)
.

H(θ) =

N∑
k=−N

ĥke
−ikθ =

ĥ0 + 2

N∑
k=1

ĥk cos kθ

 .
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Optimal Filter Design

This method uses the Chebyshev alternation theorem to
obtain a filter whose maximum error in the pass- and stop-
bands is minimized. Such filters are called Optimal Filters.

References:

• Hamming (1989)

• Oppenheim and Schafer (1989)

Optimal Filters require solution of complex nonlinear sys-
tems of equations. The algorithm for calculation of the co-
efficients involves about one thousand lines of code.

The Dolph Filter is a special optimal filter, which is much
easier to calculate.
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The Dolph-Chebyshev Filter
This filter is constructed using Chebyshev polynomials:

Tn(x) = cos(n cos−1 x), |x| ≤ 1
Tn(x) = cosh(n cosh−1 x), |x| > 1 .

Clearly, T0(x) = 1 and T1(x) = x. Also:

Tn(x) = 2xTn−1(x)− Tn−2(x), n ≥ 2 .

Now define a function in the frequency domain:

H(θ) =
T2M (x0 cos (θ/2))

T2M(x0)

where x0 > 1. Let θs be such that x0 cos(θs/2) = 1. The form
of H(θ) is that of a low-pass filter with a cut-off at θ = θs.
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H(θ) can be written as a finite expansion

H(θ) =

+M∑
n=−M

hn exp(−inθ).

The coefficients {hn} may be evaluated:

hn =
1

N

1 + 2r

M∑
m=1

T2M

(
x0 cos

θm

2

)
cos mθn

 ,

where |n| ≤ M , N = 2M + 1 and θm = 2πm/N .
The coefficients hn are real and h−n = hn.

The weights {hn : −M ≤ n ≤ +M} define the Dolph-Chebyshev
or, for short, Dolph filter.

15



An Example of the Dolph Filter

We choose the following parameters:

• Cut-off period: τs = 3 h

• Time-step: ∆t = 1
8 h = 71

2 min.

• Filter span: TS = 2 h.

• Filter order: N = 17.

Then the digital cut-off frequency is

θs = 2π∆t/τs ≈ 0.26 .

This filter attenuates high frequency components by more
than 12dB. Double application gives 25dB attenuation.
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x

Frequency response for Dolph filter with span TS = 2h, order N = 2M + 1 = 17 and

cut-off τs = 3h. Results for single and double application are shown.
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Implementation in HIRLAM:

Hop, Skip and Jump
The initialization and forecast are performed in three stages:

�Hop: Adiabatic backward integration.
Output filtered to give fields valid at
t = −1

2TS.

�Skip: Forward diabatic run spanning
range [−1

2TS, +
1
2TS]. Output filtered to

provide initialized values.

�Jump: Normal forecast, covering de-
sired range.
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Mean absolute surface pressure tendency for three fore-
casts. Solid: uninitialized analysis (NIL). Dashed: Normal
mode initialization (NMI). Dotted: Digital filter initializa-
tion (DFI). Units are hPa/3 hours.
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Changes in Surface Pressure

Table 1: Changes in model prognostic variables at analysis time and for
the 24-hour forecast, induced by DFI. Units are hPa.

Psurf Analysis Forecast

max rms max rms
2.21 .493 .924 .110
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Root-mean-square (solid) and bias (dashed) errors for mean
sea-level pressure. Average over thirty Fastex forecasts.
Green: reference run (NMI); Red: DFI run.
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Application to Richardson Forecast

�NIL:
dps
dt

= +145 hPa/6 h.

�LANCZOS:
dps
dt

= −2.3 hPa/6 h.

�DOLPH:
dps
dt

= −0.9 hPa/6 h.

Observations: Barometer steady!
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IDFI in GME Model at DWD
A DFI scheme is used in the initialization of the GME model
at the Deutscher Wetterdienst.
Incremental DFI is applied: Only the analysis increments
are filtered.

XA = XF + (XA −XF )

XA −→ X̄A , XF −→ X̄F

X̄A = XF + (X̄A − X̄F )

If analysis increment vanishes, filter has no effect.
The scheme is applied in vertical normal mode space. The
first ten vertical modes are filtered, the remaining 21 of the
31-level GME are left unchanged.
The damping of physical processes, such as precipitation
and convection, by the IDFI is thus reduced to an accept-
ably low level.

23



Half-sinc Filters
An ideal low-pass filter has an impulse response

hn =
sin nθc

nπ
=

(
θc

π

)
sinc

(
nθc

π

)
, n = . . . ,−2,−1, 0, 1, 2, . . . .

For a causal filter we require n ≥ 0. Then

hn =
sin nθc

nπ
, n = 0, 1, . . . , N − 1 .

We refer to this sequence as a half-sinc sequence.
The frequency response may be written

N−1∑
n=0

hneinθ = H(θ) = M(θ)eiϕ(θ) .

24



Boundary Filters
The group delay is defined as δ = −dϕ/dθ.

δ0 = δ(0) =
∑

nhn

A boundary filter must be zero-delay with δ0 = 0.

For the half-sinc sequence, this can be satisfied if we
truncate after an exact number of wavelengths:

N−1∑
n=0

nhn =
1

π

N−1∑
n=0

sin nθc = 0

provided (N − 1)θc = 2πK for some integer K.
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Dashed curves: Frequency responses H(θ) for seventeen half-
sincs with varying spans. Solid curve: weighted sum of sev-
enteen half-sincs, to reduce intermediate frequency boost.
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Time evolution, during a 3-hour forecast, of the area-averaged
absolute value of the surface pressure tendency (units: hPa
per 3 hours) for three forecasts. Dot-dashed line:No initial-
ization. Dotted line: BFI scheme (Sinc Filter). Solid line:
Reference DFI scheme.
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Padé Filtering
? ? ? Work in Progress ? ? ?

The Padé approximation represents a sequence of length N
by a sum of M = N/2 components of complex exponential
form:

xn =

M∑
m=1

cmγn
m .

The Z-transform of {xn} is then the sum of M terms

X(z) =

M∑
m=1

(
cmz

z − γm

)
.

The Z-transform has M simple poles at positions z = γm

with residues cm.
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We approximate the Z-transform of an arbitrary finite se-
quence by a function with M = N/2 components:

Ξ(z) =

M∑
m=1

(
cmz

z − γm

)
.

The poles are obtained by solving a Toeplitz system.

The residues are obtained from a Vandermonde system.
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Filtering the Input Sequence
To filter an input signal, we select a weighting function H(γ)
such that for components corresponding to low frequency
oscillations or long time-scales it is exactly or approximately
equal to unity, and for components corresponding to high
frequencies or short time-scales it is small.

Then we define the filtered transform to be

X̄(z) =

M∑
m=1

(
H(γm)cmz

z − γm

)
.

On inverting this, we get the filtered signal

x̄n =

M∑
m=1

H(γm)cmγn
m .

Note that the complete freedom of choice of H(z) is a pow-
erful aspect of this filtering procedure.
Warning: There are Pitfalls in the Numerical Procedure.
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DF as a Constraint in 4DVAR
If the system is noise-free at a particular time, i.e., is close
to the slow manifold, it will remain noise-free, since the slow
manifold is an invariant subset of phase-space.

We consider a sequence of values
{
x0, x1, x2, · · ·xN

}
and form

the filtered value

x̄ =

N∑
n=0

hnxn. (1)

The evolution is constrained, so that the value at the mid-
point in time is close to this filtered value, by addition of a
term

Jc = 1
2µ||xN/2 − x̄||2

to the cost function to be minimized (µ is an adjustable
parameter).
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Schematic of smooth trajectory approximating observations.
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Jc = 1
2µ||xN/2 − x̄||2

It is straightforward to derive the adjoint of the filter.

Gauthier and Thépaut (2001) found that a digital filter weak
constraint imposed on the low-resolution increments of the
4DVAR system of Météo-France:

• Efficiently controlled the emergence of fast oscillations

• Maintained a close fit to the observations.

The dynamical imbalance was significantly less in 4DVAR
than in 3DVAR.

Fuller details: Gauthier and Thépaut (2001).
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Advantages of DFI
1. No need to compute or store normal modes;

2. No need to separate vertical modes;

3. Complete compatibility with model discretisation;

4. Applicable to exotic grids on arbitrary domains;

5. No iterative numerical procedure which may diverge;

6. Ease of implementation and maintenance;

7. Applicable to all prognostic model variables;

8. Applicable to non-hydrostatic models.

9. Economic and effective Constraint in 4D-Var Analysis.

34


	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

